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Audio Mamba: Bidirectional State Space Model for
Audio Representation Learning

Mehmet Hamza Erol∗, Arda Senocak∗, Jiu Feng and Joon Son Chung, Members, IEEE

Abstract—Transformers have rapidly become the preferred
choice for audio classification, surpassing methods based on
CNNs. However, Audio Spectrogram Transformers (ASTs) ex-
hibit quadratic scaling due to self-attention. The removal of
this quadratic self-attention cost presents an appealing direction.
Recently, state space models (SSMs), such as Mamba, have
demonstrated potential in language and vision tasks in this re-
gard. In this study, we explore whether reliance on self-attention
is necessary for audio classification tasks. By introducing Audio
Mamba (AuM), the first self-attention-free, purely SSM-based
model for audio classification, we aim to address this question.
We evaluate AuM on various audio datasets - comprising six
different benchmarks - where it achieves comparable or better
performance compared to well-established AST model. Code is
available at: https://github.com/kaistmm/Audio-Mamba-AuM

Index Terms—State Space Models, Audio Spectrogram Trans-
formers, Audio Classification

I. INTRODUCTION

IN recent years, CNNs [1], [2] have been replaced with
transformer-based architectures [3], [4], [5], [6] in a

paradigm shift in deep learning, as transformers outperform
convolutional neural networks. Not only does the performance
of transformers exceed that of CNNs, but establishing a unified
architecture among many different research fields and tasks —
traditionally using completely different models — is another
breakthrough [7], [8], [9], [10], [11], [12], [13], [14], [15].
Despite their success, transformers are hindered by the reliance
on the computationally heavy self-attention mechanism. The
O(n2) cost of it is a natural concern for processing longer
sequences. This limitation motivates exploration of alternative
architectures, notably state-space models (SSMs) [16], [17],
[18], [19], [20] which replace the self-attention mechanism
with a unidirectional scanning method for time-varying input
sequences to capture global context efficiently. Recently, the
introduction of Mamba [16] marks a significant advancement
in representation power and efficiency for both training and
inference, suggesting a potential alternative to transformer-
based approaches. Given the universality and scalability of
transformers across various tasks, Mamba’s potential, with
its computational efficiency, is promising for becoming a
similarly generic and versatile architecture.
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Fig. 1: The proposed Audio Mamba (AuM) architecture.

Despite the successes of SSMs in audio [20], [21], [22] and
Mamba in language modeling and vision [23], [24], [25], [26],
[27], the adoption of Mamba in the audio classification domain
still remains unexplored. This gap motivates our work, where
we introduce a novel SSM-based model, Audio Mamba -
AuM, applied directly to audio spectrograms. Our approach is
self-attention free, focusing purely on long sequence modeling
with state space models. AuM not only achieves compa-
rable performance to the Audio Spectrogram Transformer
(AST) [6], the most prominent approach in audio classifica-
tion, but also retains several advantages of transformer-based
models. These include the ability to handle varying sequence
lengths and the ease of transferability to other tasks. Due to the
employment of state space models, reliance on self-attention
is eliminated, enabling the model to operate with linear time
complexity relative to sequence length and feature dimension,
as opposed to AST where quadratic complexity is observed.
The closest work to ours is Vision Mamba [23], which utilizes
bidirectional SSM for global visual context modeling and
positional embeddings for location information in a structure
similar to Vision Transformers (ViT) [4]. Drawing on AST’s
success in applying ViT’s principles to audio classification,
we also draw inspiration from the findings of Vision Mamba
and study the methodologies suitable for applying state space
models to audio classification. To accomplish this task, we
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take the following steps: (1) We divide the input spectrogram
into patches, which are then projected into patch embedding
tokens. (2) We add an additional learnable classification token
to the sequence of patch tokens, specifically in the middle.
(3) The Audio Mamba Encoder blocks process these token
sequences in both forward and backward directions with SSM
modules. (4) The classification token is utilized to train the
model on the supervised audio classification task and also for
making predictions in the inference stage. We summarize the
contributions of our work as follows:

• We introduce Audio Mamba (AuM) for processing audio
spectrograms, which follows a similar generic structure to
Audio Spectrogram Transformer (AST). However, AuM
uniquely utilizes bidirectional state space models (SSM)
to handle tokens in both forward and backward directions.

• By eliminating self-attention modules, AuM achieves lin-
early scaled resource consumption when evaluated with
long audio sequences.

• Our comprehensive experiments across six diverse
datasets — AudioSet [28], AudioSet Balanced, VG-
GSound [29], VoxCeleb [30], Speech Commands
V2 [31], and Epic-Sounds [32] — show that AuM
delivers performance that is comparable to or exceeds
the most prominent audio classification method AST.

II. AUDIO MAMBA

A. Flow of the Architecture

The Audio Mamba (AuM), as depicted in Fig. 1, begins by
transforming an input audio waveform into an audio spectro-
gram X ∈ RF×T , where F and T represent the frequency and
time dimensions, respectively. The spectrogram is partitioned
into a sequence of M ′ square patches S ∈ RM ′×p×p, with p
denoting the side length of each patch and M ′ calculated as
M ′ = (F/p)×(T/p). Each individual patch Si is subsequently
flattened into a one-dimensional vector Si ∈ Rp2

, and through
a linear projection, it is embedded into a D-dimensional
space, yielding Ei ∈ RD. This process is done by the patch
embedding layer. Afterward, a special learnable classification
token, denoted as CLS ∈ RD, is inserted into the middle of
the sequence, leading to an augmented embedding sequence
E ∈ RM×D where M = M ′ + 1. To encode the position
of each element within the sequence, learnable positional
embeddings P ∈ RM×D are added, resulting in the token
sequence T ∈ RM×D. This token sequence is then processed
by the Audio Mamba encoder which consists of L stacked
blocks, each of which retains the dimensionality of its input.
Thus, the encoder transforms T into an output sequence T ′ ∈
RM×D. The modified representation of the classification token
T ′
M ′/2 is then conveyed to the classification head. We note

the adoption of standard techniques like patch partitioning,
positional embeddings, and the CLS token, commonly used
in models like ViT [4], AST [6], and ViM [16], to maintain
structural similarity with AST. These choices are validated by
our empirical results in Table V in supp. material.

B. Architecture Details

Aiming to establish itself as a generic architecture, AuM
shares similarities with AST [6]. However, AuM distinguishes

itself with unique architectural and operational characteristics,
notably being a SSM-based self-attention-free model.
Preliminaries. State space models (SSMs) are linear time-
invariant systems that aim to model a continuous system which
maps a time dependent input sequence x(t) ∈ R to an output
y(t) ∈ R through maintaining a hidden state h(t) ∈ RN . Such
a system could be represented with the following equation:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t)
(1)

where A ∈ RN×N , B ∈ RN×1 and C ∈ R1×N are time-
invariant parameters. With the primary goal of adapting the
model to deep learning algorithms, a discretization process is
applied, which transforms the continuous parameters A and
B through a discretization rule into Ā and B̄, respectively.
These discretized parameters are then substituted for A and B,
leading to the following discretized formulation of the system:

ht = Āht−1 + B̄xt,

yt = Cht.
(2)

This linear time-invariant system can be extended to work for
inputs with larger dimensions (such as xt ∈ RD) by treating
each dimension as a separate SSM stream. Also, it can be
processed efficiently either as a linear recurrence or through
a global convolution [16]. However, its time-invariant nature
limits the modeling capabilities for certain data types. Mamba
enhances these models by converting time-invariant param-
eters into time-variant ones, through an efficient parameter
derivation from the time-varying inputs. For instance, in the
Forward SSM module of a Mamba block (Fig. 1 (a)), the
input sequence x ∈ RM×D after the application of Conv1D
is utilized to convert each time-invariant parameter A, B, and
C into specific corresponding parameters A′

t, B
′
t, and C ′

t for
each element xt. These parameters help the Forward SSM
module process the sequence from the beginning to the end
in a unidirectional manner by selectively updating its hidden
state to capture relevant information from the input sequence.
More details are available in [16].
Bidirectional Mamba Encoder. Mamba’s unidirectional scan
is useful for modeling causal sequential data, but learning
from 2D data benefits from multi-directional processing [23],
[24], [25]. For instance, in learning from visual data, the ViM
architecture [23] modifies the original Mamba block in Fig. 1
(a) to Fig. 1 (c) to include an additional direction for feature
extraction (Backward Conv1D) and scanning of the input
sequence (Backward SSM). The sum of the token transforma-
tions from each direction enables multi-directional and spatial-
aware processing. Similarly, AuM adopts the design strategy
shown in Fig. 1 (b) by adding an extra backward scanning
direction to the original Mamba block. This approach utilizes
the same convolved features while adapting both the forward
and backward SSM parameters into their time-variant (input-
dependent) versions for scanning. Likewise ViM, AuM also
sums these token transformations to model the global context
in a spatial aware manner, mirroring the functionality of
self-attention mechanism in transformers for modeling global
context. More details are in Algorithm 1 in supp. material.
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TABLE I: Results of from-scratch training of AST and AuM base models across various datasets.

Model AudioSet AS-20K VGGSound VoxCeleb Speech Comm. V2 Epic-Sounds
(mAP) (mAP) (Acc.) (Acc.) (Acc.) (Acc.)

AST-B/16 29.10± 0.07 10.41 ± 0.32 37.25 ± 0.31 22.44 ± 0.19 85.27 ± 1.07 44.76 ± 0.20

AuM-B/16 32.43 ± 0.31 (+3.33) 13.28 ± 1.07 (+2.87) 42.58 ± 0.28 (+5.33) 28.34 ± 3.38 (+5.90) 91.58 ± 3.17 (+6.32) 44.17 ± 0.58 (-0.60)
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Fig. 2: Empirical evaluation of memory and time consumption for AST and AuM small/base models.

Classification Token. Unlike transformers in their pure form,
which are permutation invariant when processing the input
sequence, AuM block is sensitive to the order of the input
sequence because both feature extraction (Conv1D) and SSMs
are input-order-sensitive operations. Consequently, in addition
to scanning directions, the placement of the classification token
within the input sequence becomes critical for the learning.
Similarly to ViM, after the patch embedding layer, AuM strate-
gically inserts the classification token at the midpoint of the
input sequence. This setup has shown improved performance
in bidirectional processing setup, as demonstrated in ViM, and
the ablation study conducted in Section III.

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

Datasets. Our experiments utilize: Audioset Full / Bal-
anced [28], VGGSound [29], VoxCeleb [30], Speech
Commands-V2 [31], and EPIC-SOUNDS [32] datasets.
Evaluation metrics. We utilize mean average precision (mAP)
for AudioSet experiments due to the existence of multiple
labels per sample. For the remaining datasets, top-1 classi-
fication accuracy (Acc) is used (samples have a single label).

B. Comparison to AST on Standard Benchmarks

In this section, we conduct a comparative analysis of AuM
against the AST model. Both models use base backbones,
AuM-B/16 and AST-B/16. To ensure a fair comparison, we
follow the same training and experimental settings as AST,
including maintaining fixed audio lengths for each dataset,
detailed in the supp. material. Importantly in this experiment,
neither AuM nor AST utilized pretraining weights from other
models (AST is initialized with weights from the Vision Trans-
former (ViT) model pretrained on ImageNet in the original
paper [6]) to ensure a pure comparison of these two different
architectures. We repeat each experiment three times with
the same setup but different random seeds and report the
results with the mean and standard deviation in Table I. Our
proposed AuM generally achieves better performance in this
experimental setup. This indicates that AuM, in its pure form,

TABLE II: Results of ablation on the design choices.
Architectural choices (under the settings column) refer to the
block types in Fig. 1, the location of the classification token is
indicated through the columns: Head, Mid and End per dataset.

Setting AS-20K (mAP) VGGSound (Acc.)

Head Mid End Head Mid End

Fo-Fo (a) 0.48± 0.00 11.73± 0.47 11.90± 1.05 0.33± 0.00 35.05± 0.80 39.09± 0.56

Fo-Bi (b) 13.57± 0.09 13.81± 0.32 12.35± 0.33 40.91± 0.47 42.58± 0.28 40.41± 0.15

Bi-Bi (c) 4.97± 0.13 9.69± 0.43 11.11± 0.66 34.22± 0.26 36.48± 0.46 41.09± 0.16

can serve as a potential alternative to the AST by offering
better computational efficiency and not using self-attention.

C. Comparison to AST on Efficiency

Transformer-based audio classification models are compu-
tationally demanding (quadratic complexity), particularly with
lengthy audio and high-dimensional data. SSM-based models
stand out for their computational and memory efficiency. We
compare AuM to AST from an efficiency perspective using
a single A6000 GPU. We feed audios with corresponding
lengths for every given token number to the models to simulate
the speed and GPU memory comparison, visualized in Fig-
ure 2 where AuM demonstrates clear computation and memory
efficiency. For example, the AuM-Base model that uses 20
seconds of audio (1024 tokens) for training consumes as little
GPU memory as the AST-Small model. Additionally, while
AuM-B can be trained with 80-second audios, AST-B runs
out of memory with only 20-second audios. Moreover, AuM
is 1.6 times faster in the inference stage than AST at 4096
number of tokens, with a growing rate as the token count
increases. All these results indicate that AuM exhibits a trend
of linear scaling with respect to sequence length.

D. Ablation Study on Design Choices

We conduct experiments to verify our design choices and do
further analysis. We study the following strategies regarding
the direction of SSM and conv1Ds modules:
AuM-ForwardConv1D-ForwardSSM: This choice, which is
the default Mamba block, directly applies the AuM Block with
only a forward SSM (refer to Figure 1 (a)).
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TABLE III: Results of ImageNet pretrained initializations of AST and AuM small models across various datasets. Note
that the setup of AuM-S is (c) in Fig. 1 due to the unavailability of the ViM weights for our preferred setup (b).

Model AudioSet AS-20K VGGSound VoxCeleb Speech Comm. V2 Epic-Sounds
(mAP) (mAP) (Acc.) (Acc.) (Acc.) (Acc.)

AST-S 40.32 ± 0.08 29.20 ± 0.11 49.51 ± 0.06 39.70 ± 1.83 97.38 ± 0.07 52.42 ± 0.11

AuM-S (c) 39.68 ± 0.06 (-0.64) 28.89 ± 0.20 (-0.31) 49.43 ± 0.18 (-0.07) 40.58 ± 1.11 (+0.89) 97.51 ± 0.08 (+0.13) 52.90 ± 0.40 (+0.48)

TABLE IV: Results of Audioset pretrained initializations
of AST and AuM base models across various datasets.

Model VGGSound VoxCeleb Speech Comm. V2 Epic-Sounds
(Acc.) (Acc.) (Acc.) (Acc.)

AST-B/16 44.17 ± 0.14 46.25 ± 1.08 90.37 ± 0.06 46.62 ± 0.04

AuM-B/16 46.61 ± 0.18 (+2.44) 40.72 ± 1.11 (-5.53) 94.78 ± 0.04 (+4.41) 48.18 ± 0.13 (+1.57)

AuM-ForwardConv1D-BiDirectionalSSM: This is the design
of our final model, which applies an additional backward SSM
to the previous design choice (refer to Figure 1 (b)).
AuM-BiDirectionalConv1D-BiDirectionalSSM: This variant
adds another Conv1D in the backward direction to feed the
output of this module to the backward SSM, making each
SSM module a separate stream. Vision Mamba (ViM) adopts
a similar design as the default choice (see Figure 1 (c)).
Moreover, the position of the class token is ablated for each
variant above. To save computational time, we primarily
conduct ablation studies by training our model on AudioSet
Balanced (AS-20K) and VGGSound, presented in Table II.
Impact of bidirectional SSM. To understand the impact of
SSM directions, we analyze the performance of model variants
with different directional SSM modules. The results show that
bidirectional variants (forward and backward SSM modules
together) overall perform better than the forward-only variant.
Impact of direction of conv1D. We conduct a controlled
experiment between two bidirectional methods: AuM-Fo-Bi
and AuM-Bi-Bi, where the only difference is the presence of
an additional backward Conv1D. As shown in Table II, our
design choice, which omits the backward Conv1D, generally
performs better. We hypothesize that processing a single
input sequence (output from only the forward Conv1D) is
more effective and natural for scanning in both forward and
backward directions to understand entire context, compared to
providing separate inputs to each directional SSM module and
scanning in only one direction accordingly.
Impact of the class token position. Our extensive experi-
ments reveal that positioning the class token in the middle
of the sequence is the most suitable choice for our design.
The position of the class token is a crucial decision, as each
variant exhibits a different optimal location for its use, which
greatly impacts performance. Notably, the forward-only SSM
collapses when the class token is placed at the beginning of the
sequence (head class token). This is expected, since subsequent
sequence information is not incorporated into the class token.

E. Impact of Pre-Training

Out-of-domain pre-training. Initializing audio models with
ImageNet pre-trained weights has become popular for au-
dio classification [6], [33]. Specifically, AST demonstrates a
significant performance improvement when initialized with

supervised ImageNet weights (obtained from ViT and its
variants) compared to training from scratch. As presented in
Table I, our main results exclude models with pretraining to
provide a clear comparison between these two architectures.
One might question why such results are not displayed. To the
best of our knowledge, no released ViM Base model weights
comparable to ViT weights for the AST model are available,
preventing us from conducting this experiment. However, we
still analyze AuM and AST with out-of-domain pre-training
weights by using the only available small-sized Vision Mamba
model, ViM-S, and compare the AuM-S and AST-S models.
Notably, ViM-S is in the Bi-Bi variant, but our ideal choice
for AuM, as highlighted in Sec. II and III-D, is AuM-Fo-Bi.
Due to unavailability, we use the AuM-Bi-Bi (c) variant of our
model. The findings in Table III reveal that both AuM-S (c)
and AST-S models perform similarly. We believe that with the
proper variant (b instead of c), our model could outperform
AST, as it does without vision domain pre-trained weights.
From-scratch audio-only pre-training. After analyzing Ima-
geNet initialization, we also explore using AudioSet-trained
weights of base models (from Table I) as in-domain pre-
training to initialize both AuM-B and AST-B. Here, unlike
in the previous section, our model uses weights from a model
that is architecturally identical to ours. The results, shown in
Table IV, indicate that in-domain pre-training benefits both
models, enhancing their performance. In this setting, AuM
outperforms AST, except on the VoxCeleb dataset.

IV. CONCLUSION

In this work, we introduce Audio Mamba (AuM), the
first architecture for audio classification that is free from
self-attention and purely based on state space models. Our
extensive experiments highlight AuM’s efficiency in terms of
computational and memory use, as well as its competitive
performance against the well-established Audio Spectrogram
Transformers (AST). Considering its similarity to AST struc-
ture regarding patchifying the input spectrogram, adding po-
sitional embeddings, and processing the information sequen-
tially, it shows great potential to become an alternative generic
audio backbone. By eliminating costly self-attention and effi-
ciently processing long sequences, we believe AuM brings an
important contribution to the audio field for future potential ap-
plications. The ability to handle lengthy audio is increasingly
crucial, especially with the rise of self-supervised multimodal
learning [13], [14], [15] and generation that leverages in-the-
wild data and Automatic Speech Recognition. Furthermore,
AuM could be employed in self-supervised learning setups
like Audio Masked Auto Encoders [34], [35] or multimodal
learning tasks such as Audio-Visual pretraining [7], [8], [13]
or Contrastive Language-Audio Pretraining [9], [10], [11].
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[17] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with
structured state spaces,” in Proc. ICLR, 2022.

[18] J. T. Smith, A. Warrington, and S. W. Linderman, “Simplified state space
layers for sequence modeling,” in Proc. ICLR, 2023.

[19] D. Y. Fu, T. Dao, K. K. Saab, A. W. Thomas, A. Rudra, and C. Re,
“Hungry hungry hippos: Towards language modeling with state space
models,” in Proc. ICLR, 2023.

[20] C. Chen, C.-H. H. Yang, K. Li, Y. Hu, P.-J. Ku, and E. S. Chng, “A
neural state-space model approach to efficient speech separation,” in
Proc. Interspeech, 2023.

[21] K. Goel, A. Gu, C. Donahue, and C. Ré, “It’s raw! audio generation with
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Supplementary Material
Algorithm 1 Processing of the AuM Fo-Bi Block

1: Input: Token sequence Tl : (B, M, D)

2: Output: Transformed token sequence Tl+1 : (B, M, D)

3: Define:
4: A : (E, N)

5: Ab : (E, N)

6: ∆bias : (E)

7: Do:
8: // layer normalization
9: T ′

l : (B, M, D) ← Norm(Tl)
10: // expand the embedding dimension
11: x : (B, M, E) ← Linearx(T ′

l )
12: z : (B, M, E) ← Linearz(T ′

l )
13: // 1D convolution along the sequence
14: x′ : (B, M, E) ← SiLU(Conv1D(x))
15: // deriving parameters from the input
16: B : (B, M, N) ← LinearB(x′)
17: C : (B, M, N) ← LinearC(x′)
18: // for discretization
19: ∆ : (B, M, E) ← log(1 + exp(Linear∆(x′) + ∆bias))
20: // discretize the SSM params
21: B̄ : (B, M, E, N) ← ∆⊗B
22: Ā : (B, M, E, N) ← ∆⊗A
23: Āb : (B, M, E, N) ← ∆⊗Ab

24: // forward SSM
25: y : (B, M, E) ← SSM(x′, Ā, B̄, C)⊙ SiLU(z)
26: // reverse the param. sequences for the backward SSM
27: x′

b, zb : (B, M, E) ← flip(x′), flip(z)
28: B̄b, Cb : (B, M, E, N) ← flip(B̄), flip(C)
29: // backward SSM
30: yb : (B, M, E) ← SSM(x′

b, Āb, B̄b, Cb)⊙ SiLU(zb)
31: // combine the forward / backward outputs
32: y′ : (B, M, E) ← y + flip(yb)
33: // back to normal embedding dim. and add residual
34: Tl+1 : (B, M, D) ← LinearT (y′) + Tl

35: return Tl+1 : (B, M, D)

A. DATASET DETAILS

AudioSet [28] is a dataset with a wide array of audio
samples, each marked with a set of labels. It includes over
2 million 10 seconds long audio clips with a total of 527
labels. The balanced set on the other hand is curated from
the full set, consisting of 20K samples. VGGSound [29]
contains ∼200k videos of 10 seconds each, annotated with 309
diverse sound categories. VoxCeleb [30] is a dataset focused
on audio-visual representations of human speech, featuring
1,251 speakers and around 145k speech instances. Speech
Commands-V2 [31] comprises ∼105k audio recordings, each
with a duration of 1 second, and includes 35 widely recognized
speech commands. Finally, EPIC-SOUNDS [32], part of
EPIC-KITCHENS-100 [36], comprises 75.9k audio segments
from egocentric videos, labeled across 44 classes, focusing on
actions discernible by sound, such as object collisions with
material annotations.

TABLE V: Performance comparison of AuM-B model on AS-
20K under different architectural choices.

Input Positional Patch Result
Representation Embedding Size (mAP)

CLS Token ✓ 16x16 13.81 ± 0.32

Mean Pool ✓ 16x16 11.55 ± 0.27 (-2.26)

CLS Token ✗ 16x16 13.87 ± 0.30 (+0.06)

CLS Token ✓ 128x2 11.95 ± 0.22 (-1.86)

B. TRAINING SETUP

We train all the models (AuM and AST) of all sizes (Base
and Small) across six different datasets by following the
training setup shown in Table VI. This training setup and
methodology follows that of AST to ensure a fair comparison
in assessing the effectiveness of AuM as viable alternative.

C. MODEL DETAILS

The configurations and details of all the models used
throughout the experiments are shown in Table VII. Note that
AuM models employ the same hyperparameters as their cor-
responding ViM counterparts [23]. For fairness, the ImageNet
pretrained weights are sourced from DeiT and ViM models
with similar architectural properties and training setups.
Additionally, Algorithm 1 provides the pseudocode for how
the preferred AuM block (Fo-Bi) processes and transforms an
input token sequence from a preceding layer. As indicated
in Table VII, the dimensionality variables B, M , D, E,
and N represent the batch size, token sequence length, em-
bedding dimension, expanded embedding dimension (during
processing within the AuM block), and the hidden state size,
respectively. Furthermore, it can be observed that, following
the single thread of a Conv1D operation, all input-dependent
parameters except the hidden state transformation parameter
A are shared during both the forward and backward SSM
modules, highlighting the unique characteristics of this block
type.

D. EMPIRICAL ANALYSIS FOR ARCHITECTURAL CHOICES

Transformer-based approaches adopt well-known standard
techniques such as square patchification, positional embed-
dings, and classification token (CLS token). To maintain
architectural similarity with the AST, we use the same standard
techniques in Audio Mamba (AuM). The empirical analysis
presented in Table V of this section further validates that
by adopting the same standard techniques as AST, AuM can
maintain architectural consistency while simply replacing self-
attention with the SSM-based model. First, we compared the
use of CLS tokens with Mean Pooling, where instead of
learning a specific token for classification, the average of
all tokens is used to classify the input. As expected, the
results indicate that the CLS token is an important component
for optimal performance. Secondly, we ablated the use of
positional embeddings, which showed a negligible difference,
suggesting that positional embeddings can be retained without
significant impact. Lastly, we evaluated the commonly used
square patch partitioning to rectangular frame patches, con-
firming that square patchification remains the optimal choice.
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TABLE VI: Training setup comparison across different datasets. Here, ‘*’ indicates that we follow the official learning rate
scheduler presented in the Epic Sounds paper.

Setting Audioset AS-20K VGGSound VoxCeleb Speech Comm. V2 Epic Sounds
Optimizer Adam(wd=5e-7,betas=(0.95, 0.999))

Patch Size / Stride 16 x 16 / (16, 16)

Weighted Average No

Ensembling No

Multilabel Yes No

Balanced Sampling Yes No

Spec. Window Size (ms) 25 10

Spec. Hop Size (ms) 10 5

Warm-up Duration 1000 steps 2 Epochs

Max Audio Length (s) 10 1 10

Audio Sampling Rate 48k 16k 24k

Batch Size 12 128 12

Spectrogram Size 128x1024 128x128 128x1024

SpecAug (freq. / time) 48 / 192 48 / 48 48 / 192

Loss Function BCE CE BCE CE

Mixup 0.5 0 0.6 0

Epochs 5 25 20 30

LR Sched. Type MultiStepLR(start / step / decay)
LambdaLR*

LR Sched. Params 2 / 1 / 0.5 10 / 5 / 0.5 5 / 2 / 0.75 5 / 1 / 0.85

Dataset Mean for Norm. -4.268 -5.077 -3.761 -6.846
No

Dataset Std. for Norm. 4.569 4.453 4.201 5.565

Base LR 1e-5 5e-5 1e-5 2.5e-4 1e-5

TABLE VII: Model details including parameter counts, pretrained weight sources, and various dimensions. The models are
designed for training on AudioSet.

Model # Params ImageNet Weight Source Depth (L) Embed Dim
(D)

Expanded
Embed Dim

(E)

SSM State
Dimension

(N)

AST-S 22.18M DeiT-Small-patch16-2241 12 384 ✗ ✗
AST-B 86.82M ✗ 12 768 ✗ ✗

AuM-S (Fo-Bi) 23.94M ✗ 24 384 2 * 384 16
AuM-S (Bi-Bi) 25.5M ViM-small-imgnet 80.52 24 384 2 * 384 16
AuM-B 92.1M ✗ 24 768 2 * 768 16
1 https://huggingface.co/facebook/deit-small-patch16-224
2 https://huggingface.co/hustvl/Vim-small-midclstok


