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Abstract

Humans can easily perceive the direction of sound
sources in a visual scene, termed sound source localization.
Recent studies on learning-based sound source localization
have mainly explored the problem from a localization per-
spective. However, prior arts and existing benchmarks do
not account for a more important aspect of the problem,
cross-modal semantic understanding, which is essential for
genuine sound source localization. Cross-modal semantic
understanding is important in understanding semantically
mismatched audio-visual events, e.g., silent objects, or off-
screen sounds. To account for this, we propose a cross-
modal alignment task as a joint task with sound source
localization to better learn the interaction between audio
and visual modalities. Thereby, we achieve high localiza-
tion performance with strong cross-modal semantic under-
standing. Our method outperforms the state-of-the-art ap-
proaches in both sound source localization and cross-modal
retrieval. Our work suggests that jointly tackling both tasks
is necessary to conquer genuine sound source localization.

1. Introduction
Humans can easily perceive where the sound comes from

in a scene. We naturally attend to the sounding direction
and associate incoming audio-visual signals to understand
the event. To achieve human-level audio-visual perception,
sound source localization in visual scenes has been exten-
sively studied [50, 51, 4, 47, 8, 35, 31, 33, 53, 54, 52, 36,
39, 38, 20]. Motivated by that humans learn from natural
audio-visual correspondences without explicit supervision,
most of the studies have been developed on a fundamental
assumption that audio and visual signals are temporally cor-
related. With the assumption, losses of the sound source lo-
calization task are modeled by audio-visual correspondence
as a self-supervision signal and are implemented by con-
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Figure 1. A conceptual difference between prior approaches
and our alignment-based sound source localization.

trasting audio-visual pairs, i.e., contrastive learning.
While these approaches appear to be unsupervised meth-

ods, they strongly rely on partial supervision information;
e.g., using supervisedly pretrained vision networks [50, 51,
47, 53, 54, 20] and visual objectness estimators for post-
processing [39, 38]. Without leveraging such strong initial
representations, the performance is degraded. Thus, the pre-
vious methods are not purely self-supervised approaches.
Even further, there are recent studies [45, 39, 38] that point
out visual objectness bias in existing sound source localiza-
tion benchmarks and exploit the objectness prior to improve
the localization accuracy. They show that, even without in-
teraction between visual and audio signals, a model may
achieve strong accuracy in localization by only referring
visual signals alone, which is not the true intention of the
sound source localization task. In short, the current eval-
uation and setting of the sound source localization do not
capture the true sound source localization performance.

In this work, we first sort out evaluating sound source
localization methods by introducing a cross-modal retrieval
task as an auxiliary evaluation task. By this task, we can
measure whether the learned representation have the ca-
pability to accurately interact between audio and visual
modalities; i.e., more fine-grained audio-visual correspon-
dence which is essential for genuine sound source localiza-
tion. This aspect has been missed in existing sound source
localization benchmarks. Indeed, our experiments show
that higher sound localization performance does not guar-
antee higher cross-modal retrieval performance.



Second, given this additional criterion, we revisit the
importance of semantic understanding shared across au-
dio and visual modalities in both sound source localiza-
tion and cross-modal retrieval. In the previous meth-
ods [50, 51, 54, 47], the cross-modal semantic alignment
is induced by instance-level cross-modal contrastive learn-
ing, i.e., cross-modal instance discrimination between vi-
sual and audio features. However, they are aided by labels
or supervisedly pretrained encoder 2 for easing challenging
cross-modal feature alignment. Instead, our method learns
from scratch supporting the lack of guidance by incorporat-
ing multiple positive samples into cross-modal contrastive
learning. Specifically, we construct a positive set for each
modality using both multi-view [10] and conceptually sim-
ilar samples [17]. Thereby, we enhance feature alignment
and achieve high localization performance and strong cross-
modal semantic understanding.

We evaluate our method on the VGG-SS and SoundNet-
Flickr benchmarks for sound source localization and cross-
modal retrieval. As aforementioned, the sound source lo-
calization task is closely related to the cross-modal retrieval
task, but our experiments show that existing works have
a weak performance correlation between them. This im-
plies that we need to evaluate both tasks for evaluating the
genuine sound source localization. The proposed method
performs favorably against the recent state-of-the-art ap-
proaches in both tasks.

We summarize the contributions of our work as follows:
• We analyze that sound source localization benchmarks

are not capable of evaluating cross-modal semantic un-
derstanding, thereby sound source localization methods
may perform poorly in cross-modal retrieval tasks.

• We propose semantic alignment to improve cross-modal
semantic understanding of sound source localization
models.

• We expand semantic alignment with multi-views and con-
ceptually similar samples which leads to state-of-the-art
performance on both sound source localization and cross-
modal retrieval.

2. Related work
Sound source localization. Sound source localization in
visual scenes has been investigated by exploiting correspon-
dences between audio and visual modalities. The most
widely used approach for sound source localization is cross-
modal attention [50, 51, 57] with contrastive loss [13, 29,
42]. Later, the attention-based method is improved by intra-
frame hard sample mining [8], iterative contrastive learning
with pseudo labels [35], feature regularization [36], positive
mining [52], negative free learning [54] with stop-gradient
operation [12], or momentum encoders [38].

2Typically, an image encoder is pretrained on ImageNet [16] and an audio
encoder is pretrained on AudioSet [25] in supervised ways.

Some sound localization approaches exploit additional
semantic labels [47, 33, 53] or object prior [39, 63]. Se-
mantic labels are used to pretrain audio and vision encoders
with classification loss [33, 53] or refine audio-visual fea-
ture alignment [47]. A more explicit way to refine local-
ization output is to use object prior. EZVSL [39] proposes
post-processing to combine attention based localization out-
put with a pretrained visual feature activation map. Simi-
larly, Xuan et al. [63] propose to combine off-the-shelf ob-
ject proposals with attention based sound localization re-
sults. However, postprocessing by object prior may gen-
erate a false positive output as it is solely based on vision
without audio-visual interaction.

In addition to the localization, there has been an at-
tempt to localize sounding objects and recover the sepa-
rated sounds simultaneously, also known as the cocktail
party problem [27, 37]. The separation of sound mixture
is achieved by predicting masks of spectrogram guided by
visual features [19, 1, 64, 23, 62, 21, 2, 65, 24, 58, 56].
Furthermore, a number of recent papers are presented on
audio-visual navigation for a given sound source [7, 22].

Self-supervised representation learning. In a broader
categorization, sound source localization belongs to self-
supervised multimodal learning. Our work is also relevant
to self-supervised audio-visual representation learning, and
other multimodal learning studies.

Contrastive learning aims to learn robust representations
from large-scale raw data without annotations. Recent rep-
resentation learning approaches [60, 10, 28, 11] use instance
discrimination by contrastive learning [13, 29, 42] as a pre-
text task with notable advancements in visual recognition
tasks. Recently, positive mining by nearest-neighbor search
are used to learn representations of images [17, 18, 61],
videos [26], neural recordings [6], and text-image [34]. In
this work, we expand the previous works by incorporat-
ing both multi-views and conceptually similar samples into
audio-visual modalities for cross-modal feature alignment.

A series of audio-visual representation learning studies
have shown that audio and visual contents in a video are
correlated, therefore a visual representation can be learned
by sound prediction [44] or audio representation can be
distilled from visual representation [5, 55]. Later, a va-
riety of joint audio-visual representation learning meth-
ods are proposed with an assumption that there is a se-
mantic [3, 30, 41, 40] or temporal [14, 43, 32, 15] cor-
respondence between them. However, simply learning
sound source localization by audio-visual correspondence
with instance discrimination ignores the semantic similarity
of audio-visual contents among samples, introducing false
negatives or positives. In order to mitigate this issue, clus-
tering [30], sampling [41], weighting [40], and hard min-
ing [32] are proposed. Similarly, in this work, we go beyond
instance discrimination by using multiple positive samples



Figure 2. Our sound source localization framework. Our model construct multiple positive pairs with augmentation and Nearest Neigh-
bor Search (Conceptually Similar Samples). By using these newly constructed 9 pairs, our model employs spatial localization, sL, and
semantic feature alignment, sA, for each pair to learn a better sound source localization ability.

to enforce semantic understanding across modalities.

3. Method

3.1. Preliminaries

Contrastive learning learns representation by containing
positive and negative pairs. Given an encoded query sample
q and its encoded positive pair k+ and negative pairs k, the
loss can be defined as:

L = −log
exp(q · k+/τ)∑
i exp(q · ki/τ)

(1)

where τ is the temperature parameter.

Cross-modal contrastive learning extends contrastive
learning across multiple modalities. In sound source local-
ization, audio-visual correspondence is used to define pos-
itive and negative cross-modal pairs. With an audio-visual
dataset D = {(vi, ai) : i = 1, ..., N} and its encoded fea-
tures vi = fv(vi) and ai = fa(ai), cross-modal contrastive
learning loss is defined as:

Li = −log
exp(s(vi,ai)/τ)∑
j exp(s(vi,aj)/τ)

(2)

where s is a cross-modal similarity function. The cross-
modal contrastive loss Eq. (2) can be extended to symmetric
form [48] as used in a few previous works [39, 38].

3.2. Cross-Modal Feature Alignment

We consider both spatial localization and semantic fea-
ture alignment for sound source localization. To this end,
we use two different similarity functions sL and sA for con-
trastive learning (Eq. (2)), sL for localization and sA for
cross-modal feature alignment.

Recent studies rely on audio-visual spatial correspon-
dence maps to learn sound source localization by contrast-
ing them. Given a spatial visual feature v ∈ Rc×h×w and
audio feature a ∈ Rc, audio-visual similarity with a corre-
spondence map can be calculated as follows:

sL(v,a) =
∑

xy∈M

1

|M |
vxy · a

∥vxy∥∥a∥ (3)

where vxy is a feature vector at location (x, y), and M is
an optional binary mask when an annotation or pseudo-
mask [8, 36] is available. Since we assume no supervi-
sion for sound source localization, we do not use any mask,
therefore, M = 1.

The contrastive loss with localization similarity sL en-
forces location dependent alignment giving sparse but
strong audio-visual correspondence which enables to per-
form localization. However, our empirical studies on cross-
modal retrieval indicate that strong localization perfor-
mance does not guarantee semantic understanding. To over-
come the low semantic understanding in recent studies, we
propose to add instance-level contrastive loss. Instance-
level contrasting encapsulates the whole context in a scene,
enforcing better audio-visual semantic alignment. How-
ever, instance-level contrasting may smooth out spatial
discriminativeness learned by Eq. (3). Inspired by Sim-
CLR [10], we adopt a projection layer to align audio-visual
semantics in a projection space. The projection layer sep-
arates the latent space of localization and semantic align-
ment, thereby preventing the alignment loss smoothing out
the spatial discriminativeness. The similarity function for
cross-modal feature alignment is defined as follows:

sA(v,a) =
pv(avg(v)) · pa(a)
∥pv(avg(v))∥∥paa∥

(4)

where avg(·) is spatial average pooling, pv is a projection



layer for visual features, and pa is a projection layer for
audio features.

3.3. Expanding with Multiple Positive Samples

Typically, contrastive learning contrasts between one
positive pair and multiple negative pairs as shown in Eq. (1).
In audio-visual learning, by an audio-visual correspondence
assumption, an audio-image pair from the same clip is used
as a positive pair while negative pairs are sampled from dif-
ferent clips. However, single-instance discrimination may
not be sufficient to achieve strong cross-modal alignment.
In this section, we expand contrastive learning beyond sin-
gle instance discrimination by positive set construction and
pairing them. To construct a positive set, we incorporate
both hand-crafted positive and conceptual positive samples
for each modality. Later, we adjust the contrastive learn-
ing to incorporate multiple positive pairs to enforce cross-
modal alignment.

Obtaining hand-crafted positive samples. Using ran-
domly augmented samples as positive multi-view pairs are
widely adopted in self-supervised representation learning,
i.e., instance discrimination. Similarly, we extend a single
anchor audio-image pair to multiple positive pairs by ap-
plying simple augmentations on image and audio samples
separately. While we utilize common image transforma-
tions on images, we apply temporal shifting to audios. It is
worth noting that sound source localization task learns from
the underlying semantic consistency rather than subtle time
differences as in videos. Thus, a slight shift in the audio
may not alter contextual information significantly. As a re-
sult of hand-crafted multi-view positive pair generation, we
obtain additional vaug and aaug samples.

Obtaining conceptual positive samples. Apart from man-
ually created augmented views, we additionally expand our
positive set with conceptually similar samples. The sam-
pling strategy with nearest neighbor search can be per-
formed in a various way, such as on-the-fly sampling [17,
49, 61, 34], sampling by pretrained encoders [52], or guided
sampling [26, 18] using another modality. For selecting
our conceptually similar samples, we utilize pretrained en-
coders. Note that pretrained encoders trained either with
supervised or self-supervised learning are effective in posi-
tive sample mining as shown in the experiment section. By
employing readily available image and audio encoders, we
use the k-nearest neighborhood search to sample semanti-
cally similar samples in both modalities. In particular, given
a pair of image and audio, we compute cosine similarity
with all other samples and choose the top-k most similar
samples among the training set for each modality. From
a set of k samples, we randomly select one sample to ob-
tain conceptually similar samples for each modality, vconc.

and aconc.. By utilizing the conceptually similar samples as

positive samples, our model expands semantic understand-
ing.

Pair Construction. Once we obtain the conceptual and
hand-crafted positive samples for each modality, we pro-
ceed to create 9 distinct audio-visual pairs by pairing V =
{v,vaug,vconc} and A = {a,aaug,aconc}. This is done to
ensure semantic alignment and consistency between them
through contrastive learning. The negative pairs are ran-
domly paired from the remaining samples in a training set.
It is worth noting that some of these pairs are a combination
of hand-crafted and conceptually similar samples, which
further enhances the feature alignment of our model during
training.

3.4. Training

Our loss formulation incorporates both localization and
instance-level similarity functions with multiple positive
pairs constructed by augmentation and conceptually simi-
lar sample search. The final loss term is defined as follows:

Li = −
∑
vi∈V

∑
ai∈A

[
log

exp(sL(vi,ai)/τ)∑
j exp(sL(vi,aj)/τ)

+ log
exp(sA(vi,ai)/τ)∑
j exp(sA(vi,aj)/τ)

] (5)

where V and A indicate positive sample sets.

4. Experiments
Our proposed method for sound source localization

is validated through experiments conducted on VG-
GSound [9] and SoundNet-Flickr [5]. First, we conduct
a quantitative analysis to evaluate the accuracy of the lo-
calization, cross-modal retrieval, and the impact of vari-
ous components of our model. Then, we visualize our
sound source localization results across different categories
of sounds.

4.1. Experiment Setup

Datasets. Our method is trained using the VGGSound [9]
and SoundNet-Flickr-144K [50, 51]. VGGSound is an
audio-visual dataset containing around ∼200K videos.
SoundNet-Flickr-144K set is the subset of SoundNet-
Flickr [5]. After training, we test the sound localization per-
formance with VGG-SS [8] and SoundNet-Flickr-Test [50]
datasets for the main experiments. These evaluation sets
have bounding box annotations of sound sources for ∼5K
and 250 samples, respectively. Moreover, we employ
the AVSBench [66] and Extended VGGSound/SoundNet-
Flickr [38] datasets for additional evaluations. AVSBench
dataset provides binary segmentation maps that show the



VGG-SS Flickr-SoundNet
Method Pre. Vision cIoU ↑ AUC ↑ cIoU ↑ AUC ↑
Attention [50]CVPR18 ✓ 18.50 30.20 66.00 55.80
CoarseToFine [47]ECCV20 ✓ 29.10 34.80 - -
LCBM [53]WACV22 ✓ 32.20 36.60 - -
LVS [8]†CVPR21 ✗ 30.30 36.40 72.40 57.80
LVS [8]CVPR21 ✗ 34.40 38.20 71.90 58.20
HardPos [52]ICASSP22 ✗ 34.60 38.00 76.80 59.20
SSPL (w/o PCM) [54]CVPR22 ✓ 27.00 34.80 73.90 60.20
SSPL (w/ PCM) [54]CVPR22 ✓ 33.90 38.00 76.70 60.50
EZ-VSL (w/o OGL) [39]ECCV22 ✓ 35.96 38.20 78.31 61.74
SSL-TIE [36]ACM MM22 ✗ 38.63 39.65 79.50 61.20
SLAVC (w/o OGL) [38]NeurIPS22 ✓ 37.79 39.40 83.60 -
Ours

↰

NN Search w/ Supervised Pre. Encoders ✗ 39.94 40.02 79.60 63.44

↰

NN Search w/ Self-Supervised Pre. Encoders ✗ 39.20 39.70 79.20 63.00
with OGL:
EZ-VSL (w/ OGL) [39]ECCV22 ✓ 38.85 39.54 83.94 63.60
SLAVC (w/ OGL) [38]NeurIPS22 ✓ 39.80 - 86.00 -
Ours (w/ OGL)

↰

NN Search w/ Supervised Pre. Encoders ✗ 42.64 41.48 82.40 64.60

↰

NN Search w/ Self-Supervised Pre. Encoders ✗ 42.47 41.42 82.80 64.48
with Optical Flow:
HearTheFlow [20]WACV23 ✓ 39.40 40.00 84.80 64.00

Table 1. Quantitative results on the VGG-SS and SoundNet-
Flickr test sets. All models are trained with 144K samples
from VGG-Sound and tested on VGG-SS and SoundNet-Flickr.
† is the result of the model released on the official project page.
SLAVC [38] does not provide AUC scores.

audio-visually correspondent pixels for roughly 5k five-
second videos belonging to 23 categories. Lastly, the
Extended VGGSound /SoundNet-Flickr dataset, proposed
by [38], is used to understand non-visible sound sources.

Implementation details. We use two ResNet18 models for
both audio and vision encoding. Unlike prior approaches,
we do not fine-tune (or use a pretrained) a visual encoder
from ImageNet pretrained weights. Instead, we train both
the audio and vision encoders from scratch. We preprocess
images and audios following the previous works [8, 52].
To create multiple pairs, we utilize both NN search and
generic augmentation approaches. For NN search, we ex-
periment on two different setups to retrieve k conceptually
similar samples: (1) For supervisedly pretrained encoder
experiments, We employ ResNet and VGGSound models
pretrained on ImageNet and VGGSound respectively, (2)
For self-supervisedly pretrained encoder experiments, we
utilize the CLIP [48] Vision Encoder and Wav2CLIP [59]
Audio Encoder. We use k=1000 for the experiments. To
perform image augmentations, we follow the augmentations
used in SimCLR [10]. For audios, we randomly select time-
window shifts in a time axis. The model is trained for 50
epochs with Adam Optimizer and a learning rate of 0.0001.
τ is set to 0.07 in contrastive learning.

4.2. Quantitative Results

Comparison with strong baselines. In this section, we
conduct a comparative analysis of our sound source lo-
calization method against existing approaches. We carry
out our evaluations in two settings, following previous ap-
proaches. Firstly, we train our model on VGGSound-144K

Method Pre. Vision cIoU ↑ AUC ↑
Attention[50]CVPR18 ✓ 66.00 55.80
DMC[30]CVPR19 ✓ 67.10 56.80
LVS [8]†CVPR21 ✗ 67.20 56.20
LVS [8]CVPR21 ✗ 69.90 57.30
HardPos [52]ICASSP22 ✗ 75.20 59.70
SSPL (w/o PCM) [54]CVPR22 ✓ 69.90 58.00
SSPL (w/ PCM) [54]CVPR22 ✓ 75.90 61.00
EZ-VSL (w/o OGL) [39]ECCV22 ✓ 71.89 58.81
SSL-TIE [36]ACM MM22 ✗ 81.50 61.10
SLAVC (w/o OGL) [38]NeurIPS22 ✓ - -
Ours

↰

NN Search w/ Supervised Pre. Encoders ✗ 85.20 62.20

↰

NN Search w/ Self-Supervised Pre. Encoders ✗ 84.80 62.66
with OGL:
EZ-VSL (w/ OGL) [39]ECCV22 ✓ 83.13 63.06
SLAVC (w/ OGL) [38]NeurIPS22 ✓ - -
Ours (w/ OGL)

↰

NN Search w/ Supervised Pre. Encoders ✗ 84.00 64.16

↰

NN Search w/ Self-Supervised Pre. Encoders ✗ 84.40 64.38
with Optical Flow:
HearTheFlow [20]WACV23 ✓ 86.50 63.90

Table 2. Quantitative results on the SoundNet-Flickr test set.
All models are trained and tested on the SoundNet-Flickr 144K
dataset. † is the result of the model from the official project page.
SLAVC [38] does not provide results with SoundNet-Flickr 144K.

and evaluate it on VGG-SS and SoundNet-Flickr test sets.
Secondly, we train our model on SoundNet-Flickr-144K
and evaluate it on the SoundNet-Flickr test set. It is impor-
tant to note that all the compared models are trained using
the same amount of data. AVEL [57], AVObject [2], and
LCBM [53] models rely on video input, and as such, they
cannot be evaluated on the SoundNet-Flickr dataset, which
contains static image and audio pairs. We present our re-
sults in Table 1 and Table 2.

Our proposed model achieves higher performance com-
pared to prior approaches on both test sets. Specifically,
it yields a +2.15% cIoU and +0.6% AUC improvement
on VGGSS, as well as a +3.7% cIoU improvement on
SoundNet-Flickr compared to the state-of-the-art methods
that uses pretrained vision encoder. It is worth highlighting
that unlike the majority of previous works, our proposed
model does not utilize a vision encoder pretrained on Im-
ageNet in a sound source localization backbone. This is
because, as discussed in Mo et al. [38], using supervisedly
pretrained vision encoders makes the sound source local-
ization problem a weakly supervised problem. However, it
is worth noting that even without using a pretrained vision
encoder, our method achieves state-of-the-art performance
on both experiments that are presented in Table 1 and Ta-
ble 2. We demonstrate the performance of our model with
the pretrained models learned through supervised learning
(NN Search w/ Supervised Pre. Encoders) and with mod-
els that are pretrained through self-supervised learning (NN
Search w/ Self-Supervised Pre. Encoders) in NN Search
module. As the results indicate, using self-supervised pre-



Test Class Method Pre. Vision cIoU ↑ AUC ↑

Heard 110

LVS [8]CVPR21 ✗ 28.90 36.20
EZ-VSL(w/o OGL) [39]ECCV22 ✓ 31.86 36.19
SLAVC(w/o OGL) [38]NeurIPS22 ✓ 35.84 -
Ours ✗ 38.31 39.05
with OGL:
EZ-VSL(w/ OGL) [39]ECCV22 ✓ 37.25 38.97
SLAVC(w/o OGL) [38]NeurIPS22 ✓ 38.22 -
Ours(w/ OGL) ✗ 41.85 40.93
with Optical Flow:
HearTheFlow [20]WACV23 ✓ 37.30 38.60

Unheard 110

LVS [8]CVPR21 ✗ 26.30 34.70
EZ-VSL(w/o OGL) [39]ECCV22 ✓ 32.66 36.72
SLAVC(w/o OGL) [38]NeurIPS22 ✓ 36.50 -
Ours ✗ 39.11 39.80
with OGL:
EZ-VSL(w/ OGL) [39]ECCV22 ✓ 39.57 39.60
SLAVC(w/o OGL) [38]NeurIPS22 ✓ 38.87 -
Ours(w/ OGL) ✓ 42.94 41.54
with Optical Flow:
HearTheFlow [20]WACV23 ✓ 39.30 40.00

Table 3. Comparison results on open-set audio-visual localiza-
tion experiments trained and tested on the splits of [8, 39, 20].

Test Class Method Pre. Vision cIoU ↑ AUC ↑

Heard 110 SSSL-TIE [36]ACM MM22 ✗ 39.00 40.30
Ours ✗ 41.20 41.00

Unheard 110 SSSL-TIE [36]ACM MM22 ✗ 36.50 38.60
Ours ✗ 36.90 38.59

Table 4. Comparison results on open set audio-visual localiza-
tion experiments trained and tested on the splits of [36].

trained encoders in NN Search performs on par with the
supervised pretrained encoders in NN Search. This shows
that our model does not depend on supervised pretrained
encoders for the NN search module and can utilize any type
of pretrained encoder feature for nearest neighbor search.
Note that these pretrained encoders are not used in the back-
bone networks of the sound source localization module but
only in the NN Search Module, as illustrated in Figure 2.

We also discuss the methods employed by previous stud-
ies, such as SSPL [54] which utilizes a sub-module called
PCM to reduce the impact of background noise, HTF [20]
which utilizes Optical Flow, and EZ-VSL [39] which refines
its initial audio-visual localization outcomes through object
guidance obtained from an ImageNet pretrained visual en-
coder. Our model, on the other hand, and any of its varia-
tions do not require any task-specific modules or operations
to achieve the state-of-the-art (SOTA) results. This suggests
that using additional semantic and multi-view correspon-
dence, as well as feature alignment, provides more varied
and robust supervision for better aligned audio and visual
features, as opposed to using task-specific approaches.

The quantitative results presented in Table 1 and Table 2
also showcase the performance of previous methods that
utilize object guidance to evaluate their final sound source
localizations. Our model outperforms all previous methods
that employ object guidance on the VGG-SS test set and
achieves comparable results on the SoundNet-Flickr test set,
even though our model does not use object guided refine-
ment (OGL). Additionally, we acknowledge that the addi-
tion of OGL to our audio-visual localization results in im-
provement on the VGGSS test set, while degrading perfor-

Test Set Method Pre. Vision mIoU ↑ F-Score ↑

S4

LVS (w/o OGL) [8]CVPR21 ✗ 26.9 33.6
EZ-VSL (w/o OGL) [39]ECCV22 ✓ 27.6 34.2
SLAVC (w/o OGL) [38]NeurIPS22 ✓ 28.1 34.6
Ours (w/o OGL)

↰

NN Search w/ Supervised Pre. Encoders ✗ 29.6 35.9

↰

NN Search w/ Self-Supervised Pre. Encoders ✗ 29.3 35.6

Table 5. Quantitative results on AVS Bench S4 dataset. All
models are trained on the VGGSound 144K dataset.

A → I I → A

Model Pre. Vision R@1 R@5 R@10 R@1 R@5 R@10

LVS [8]CVPR21 ✗ 3.87 12.35 20.73 4.90 14.29 21.37
EZ-VSL [39]ECCV22 ✓ 5.01 15.73 24.81 14.2 33.51 45.18
SSL-TIE [36]MM22 ✗ 10.29 30.68 43.76 12.76 29.58 39.72
SLAVC [38]NeurIPS22 ✓ 4.77 13.08 19.10 6.12 21.16 32.12
Ours

↰

NN Search w/ Supervised Pre. Encoders ✗ 16.47 36.99 49.00 20.09 42.38 53.66↰

NN Search w/ Self-Supervised Pre. Encoders ✗ 14.31 37.81 49.17 18.00 38.39 49.02

Table 6. Summary of retrieval recall scores for all models. All
of the models are trained on VGGSound 144K data and retrieval
is performed on entire VGG-SS dataset, containing ∼5K samples.

mance on the SoundNet-Flickr test set. In contrast, prior
methods see modest improvements when utilizing OGL.
This can be explained by the fact that our model is already
accurately localizing the sounding objects, and object guid-
ance can interfere with localization results by introducing
visual regions that are not sounding (refer to Section 4.4 for
visual results). Unlike prior methods, we do not use OGL
in our architecture for the remainder of this paper, unless it
is being directly compared with OGL-based methods.

Finally, in comparison to HearTheFlow, which utilizes
an additional Optical Flow modality, our method outper-
forms it on the VGGSS test set, and achieves slightly lower
performance on the SoundNet-Flickr test set without utiliz-
ing any additional modalities, but instead relying on better
audio-visual correspondence and alignment.

Open Set Audio-Visual Localization. The study by Chen
et al. [8] evaluates the generalization ability of sound source
localization methods in an open set scenario. This involves
testing the models on categories that are both present in the
training data (heard) and categories that are not present (un-
heard). To accomplish this, 110 randomly selected cate-
gories from the VGGSound dataset are used for training,
while another disjoint set of 110 categories are reserved for
evaluation to ensure the model have never seen or heard
them before. It should be noted that not all previous works
use the same train/test splits. While some works, includ-
ing [8, 39, 38, 46], share the same splits,[36] uses a dif-
ferent split. Therefore, to ensure a fair comparison, we
conduct experiments on both splits, evaluating on test sam-
ples from both heard and unheard categories. The results
are shown in Table 3 and Table 4. Our model outper-
forms existing approaches on both categories, regardless
of the train/test splits used. Specifically, in Table 3, our
model (w/o OGL) even surpasses the other models that use
OGL. Previous approaches draw different conclusions from



Extended Flickr-SoundNet Extended VGG-SS
Method Pre. Vision AP ↑ max-F1 ↑ LocAcc ↑ AP ↑ max-F1 ↑ LocAcc ↑
CoarseToFine [47]ECCV20 ✓ 0.00 38.20 47.20 0.00 19.80 21.93
LVS [8]CVPR21 ✗ 9.80 17.90 19.60 5.15 9.90 10.43
Attention10k [50]CVPR18 ✓ 15.98 24.00 34.16 6.70 13.10 14.04
DMC [30]CVPR19 ✓ 25.56 41.80 52.80 11.53 20.30 22.63
DSOL [31]NeurIPS20 ✓ 38.32 49.40 72.91 16.84 25.60 26.87
OGL [39]ECCV22 - 40.20 55.70 77.20 18.73 30.90 36.58
EZ-VSL (w/o OGL) [39]ECCV22 ✓ 46.30 54.60 66.40 24.55 30.90 31.58
SLAVC (w/o OGL) [38]NeurIPS22 ✓ 51.63 59.10 83.60 32.95 40.00 37.79
Ours

↰

NN Search w/ Supervised Pre. Encoders ✗ 64.43 66.90 79.60 34.73 40.70 39.94

↰

NN Search w/ Self-Supervised Pre. Encoders ✗ 62.67 66.10 79.20 33.09 40.00 39.20

Table 7. Quantitative results on the Extended VGG-SS and Ex-
tended SoundNet-Flickr sets. All models are trained with 144K
samples from VGG-Sound. The results of the prior approaches are
obtained from [38].

these open set experiments. While some conclude that their
models have strong generalization ability because their per-
formance in unheard categories is higher than heard cate-
gories [39, 38, 46], the other works that cannot achieve the
same trend discuss that this is expected since their models
are dealing with unseen categories [36]. However, our re-
sults show that these conclusions are highly dependent on
the chosen train/test splits. Our model performs better than
existing works in both splits, but there is no uniform trend
in between two splits. While our method performs better on
unheard categories in the splits of [8, 39, 38, 46], it performs
worse on unheard categories in the split of [36]. Therefore,
we conclude that the observed trends are highly dependent
on the randomly selected train/test splits.

AVSBench [66]. To demonstrate the precise sound local-
ization ability of our model, we conduct experiments on
the AVSBench S4 dataset. The dataset’s objective is to de-
tect audio-visual correspondence and correlation at the pixel
level. To make a fair comparison, we use some of the self-
supervised sound source localization methods mentioned
earlier. All models are trained on VGGSound-144K and
directly assessed on the AVSBench S4 dataset without any
further fine-tuning (zero-shot setting). Our results, which
are presented in Table 5, indicate that our method achieves
the highest performance, as in the previous experiments.

Retrieval. We evaluate sound localization models on the
VGG-SS dataset for cross-modal retrieval. As shown in Ta-
ble 6, our method clearly outperforms other state-of-the-art
methods. One interesting observation is that EZ-VSL [39]
notably performs better than SLAVC [38] on cross-modal
retrieval, while SLAVC performs better on sound source
localization in Table 1. This shows that with the cur-
rent benchmark evaluations, better sound localization per-
formance does not guarantee better audio-visual seman-
tic understanding, thereby we need to additionally evalu-
ate sound source localization methods on cross-modal un-
derstanding tasks. Another observation is that the perfor-
mance gap between our method and the strongest competi-
tor SSL-TIE [36] is notably larger on cross-modal retrieval
than sound source localization. This is due to the strong
cross-modal feature alignment of our method that is over-

Semantic Multi-View Feature Alignment cIoU ↑ AUC ↑
(A) ✓ ✓ ✓ 39.94 40.02
(B) ✓ ✓ ✗ 39.10 39.44
(C) ✓ ✗ ✓ 38.75 39.34
(D) ✓ ✗ ✗ 38.24 38.90
(E) ✗ ✓ ✓ 38.30 39.38
(F) ✗ ✓ ✗ 37.72 39.19
(G) ✗ ✗ ✓ 34.93 37.94
(H) ✗ ✗ ✗ 34.22 37.67

Table 8. Ablation studies on our proposed method to see the
impact of each main component.

looked in the sound source localization benchmarks.

Extended Flickr and VGG-SS datasets. The prior
study [38] points out that the current sound source local-
ization benchmarks overlook false positive detection. It is
because the evaluation samples always contain at least a
sounding object in a scene; thus cannot capture false pos-
itive outputs, e.g., silent objects or off-screen sounds. To
analyze false positive detection, Mo and Morgado [38] ex-
tended the benchmarks with non-audible, non-visible, and
mismatched audio-visual samples. The expectation is that
a sound source localization model should not localize any
objects when audio-visual semantics do not match.

The experiment with the extended datasets in Table 7
shows that our method performs favorably against state-of-
the-art competitors. Our method performs better than the
competing methods in false positive detection measured by
AP and max-F1, while SLAVC [38] achieves better lo-
calization performance on Extended Flickr-SoundNet. As
both false positive detection and cross-modal retrieval re-
quire cross-modal interaction, our method shows strong per-
formance on both tasks.

4.3. Ablation Results

We conduct a series of experiments in order to verify our
design choices and make further analysis. To save compu-
tational time and resources, we primarily perform ablation
studies by training our model on VGGSound-144K with
NN Search w/ Supervised Pre. Encoders setup and eval-
uating it on VGG-SS. Results are in Table 8.

Impact of Semantic and Multi-View Invariance. In order
to understand the impact of each type of invariance (con-
sistency), we analyze the performance of our model with
different type of invariance methodologies in Table 8. As
the results of (C vs. E) and (D vs. F) reveal, using seman-
tically similar samples (semantic invariance) produces bet-
ter performance (+0.45% and +0.5% on cIoU respectively)
compared to augmented multi-view invariance. Moreover,
as the results of (A vs. C) and (A vs. E) depict, the com-
bination of these two different types of invariance comple-
ment each other and and further enhances the model’s per-
formance. Using pair combination of these two different
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Figure 3. Sound Localization Results on VGG-SS (top) and SoundNet-Flickr (bottom).

k in k-NN 10 30 100 500 1000

cIoU ↑ 38.80 38.82 39.46 39.90 39.94
AUC ↑ 39.51 39.67 39.93 40.00 40.02

Table 9. Varying k in conceptually similar sample selection.

types of consistency elements provides additional supervi-
sions, invariance and alignments, leading to a more robust
representation space and improve sound localization perfor-
mance.

Impact of Feature Alignment. We perform controlled ex-
periments to verify the effect of the feature alignment strat-
egy, and the results are presented in Table 8. Comparing the
performance of the proposed model with and without fea-
ture alignment, (A vs. B), highlights the importance of this
strategy to boost the performance. Further, examining the
results of experiments (C vs. D) and (E vs. F) reveals that
feature alignment provides additional gains irrespective of
the consistency types. These findings indicate that global
feature-based alignment helps the optimization of audio-
visual correspondence.

Impact of k in conceptually similar sample selection. Se-
lecting an appropriate k value for sampling nearest neigh-
bors is crucial. If this value is set too high, it may result in
noisy samples that could disrupt the learning phase. Con-
versely, if the value is set too low, only very similar samples
to the anchor will be provided and it limits semantic invari-
ance. Nevertheless, when compared to Table 8 (E), we ob-
serve performance gain throughout the range of k used for
the ablation study. Table 9 shows an ablative evaluation of
the effect of k value used to select neighborhood samples.
The results indicate that an optimal choice is k=1000. This

Ours With OGL Ours With OGL Ours With OGL

Figure 4. OGL degrades our sound localization results on
SoundNet-Flickr.

choice of k can be explained by the fact that it provides a
balance between semantic similarity and sufficient diversity.

4.4. Qualitative Results

In this section, we visualize and compare our sound lo-
calization results with the recent prior works on standard
benchmarks, namely on VGG-SS and SoundNet-Flickr.
The visualized samples in Figure 3 show that localized re-
gions of the proposed method are more compact and accu-
rately aligns with the sounding objects than the other meth-
ods. For instance, small size musical instrument is localized
accurately compared to the recent methods in the top right
column.

We also compare our localization results with and with-
out object-guided localization (OGL). As shown in Fig-
ure 4, OGL deteriorates our sound localization outputs.
OGL captures objectness in a scene, thereby tending to at-
tend to any distinctive objects regardless of whether it is the
sound source or not. Therefore, OGL can be helpful when
localization totally fails because of the objectness bias in the
benchmarks, but it is harmful when the localization is accu-
rate which is the case for the examples shown. This result
is consistent with the quantitative result in Table 2, showing
that our method with OGL performs worse.

Throughout the paper, we discuss the importance of
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Figure 5. Interactive Sound Localization of Ours and
SLAVC [38]. Our model correctly follows the cross-modal in-
teraction for given different sounds.

cross-modal semantic understanding. We demonstrate in-
teractiveness of our method across modalities in Figure 5.
Genuine sound source localization should be able to local-
ize objects that are correlated with the sound. To visualize
cross-modal interaction, we synthetically pair up the same
image with different sounds of objects that are visible in a
scene. The examples demonstrate that the proposed method
can localize different objects depending on the contexts of
sounds, while the competing method can not.

5. Conclusion

In this work, we investigate cross-modal semantic under-
standing that has been overlooked in sound source localiza-
tion studies. We observe that higher sound source localiza-
tion performance on the current benchmark does not nec-
essarily show higher performance in cross-modal retrieval,
despite its causal relevance in reality. To enforce strong un-
derstanding of audio-visual semantic matching while main-
taining localization capability, we propose semantic align-
ment with multi-views of audio-visual pairs in a simple yet
effective way. The ablation study shows that strong seman-
tic alignment is achieved when both semantic alignment
loss and enriched positive pairs are used. We extensively
evaluate our method on sound source localization bench-
marks including cross-dataset and open-set settings. More-
over, our analyses on cross-modal retrieval and false posi-
tive detection verify that the proposed method has strong ca-
pability in cross-modal interaction. Our study suggests that
sound localization methods should be evaluated not only
on localization benchmarks but also on cross-modal under-
standing tasks.
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