
Lightweight Audio Segmentation for Long-form Speech Translation

Jaesong Lee1∗, Soyoon Kim1,2∗, Hanbyul Kim1, Joon Son Chung2

1NAVER Cloud, South Korea
2KAIST, South Korea

{jaesong.lee, soyoon.kim, hanbyul.kim}@navercorp.com, joonson@kaist.ac.kr

Abstract

Speech segmentation is an essential part of speech translation
(ST) systems in real-world scenarios. Since most ST mod-
els are designed to process speech segments, long-form audio
must be partitioned into shorter segments before translation.
Recently, data-driven approaches for the speech segmentation
task have been developed. Although these approaches improve
overall translation quality, a performance gap exists due to a
mismatch between the models and ST systems. In addition, the
prior works require large self-supervised speech models, which
consume significant computational resources. In this work, we
propose a segmentation model that achieves better speech trans-
lation quality with a small model size. We propose an ASR-
with-punctuation task as an effective pre-training strategy for
the segmentation model. We also show that proper integration
of the speech segmentation model into the underlying ST sys-
tem is critical to improve overall translation quality at inference
time.
Index Terms: speech translation, audio segmentation

1. Introduction
Speech translation (ST), which converts speech signals from
one language into text in another language, helps facilitate com-
munication between people who speak different languages and
helps overcome language barriers. Integrating an automatic
speech recognition (ASR) component with a machine transla-
tion (MT) component is commonly referred to as a cascaded
architecture, and it is the traditional and common approach for
the ST task [1].

Recently, there has been a growing interest in end-to-end
(E2E) methods that directly translate spoken source language
to target language text using a single sequence-to-sequence
model [2, 3]. Since E2E ST doesn’t produce intermediate
speech recognition results, it can prevent ASR errors from prop-
agating to the translation model. It can also improve latency and
model size because it combines the ASR and MT modules into
a single model for inference. However, this approach is still less
accurate than the cascade system [4, 5].

Although both cascade and E2E ST systems have been ac-
tively developed, the models are designed to process segmented
speech due to constraints on model architecture and training
conditions. Long-form speech must be segmented in advance
to use the ST system in real-world scenarios where segmenta-
tion is not available. However, until recently, it has been under-
explored how the segmentation impacts the overall quality of
the ST system.

* Equal contribution.

If a segmentation method is not matched to the underlying
ST system, it could lead to low-quality translation results [6].
In [7], two common failure modes due to the mismatch are
discussed. When a segment is too long or contains multiple
sentences, the translation may omit some of the input, called
a deletion error. On the other hand, if a segment is too short
or does not contain a proper sentence, the translation may con-
tain phrases not in the input, referred to as an insertion error or
hallucination [8, 9]. Thus, it is essential to produce segments
of appropriate duration and with a single complete sentence to
meet the requirements of the underlying ST system.

Several segmentation methods for ST have been previously
introduced in the literature [10, 11, 12, 13]. Pause-based seg-
mentation using voice activity detection (VAD) is commonly
employed as a preliminary step for ST systems [10, 11, 12].
Another widely used strategy involves length-based segmen-
tation techniques, where speech is divided into segments ac-
cording to heuristic principles [12, 13]. For cascaded speech
translation systems, there are works on re-segmentation of ASR
output text [14, 15]. Also, it is proposed to interpret predic-
tions of ASR and ST models for fixed-size chunks as segmen-
tation [16, 17, 18, 19].

Recently, data-driven approaches for audio segmentation
have been proposed [20, 21, 22], which consist of a neural net-
work encoder and predict segmentation at frame level. The
methods have been shown to improve segmentation perfor-
mance compared to the traditional methods. However, the trans-
lation quality of the proposed methods is still behind the one of
oracle segmentation, as a mismatch exists between the two seg-
mentation results [6]. Also, the models are usually based on
large self-supervised models, such as wav2vec 2.0 [23], whose
computational cost would be a hurdle for deploying ST system
on mobile devices.

In this paper, we aim to improve the end-to-end segmen-
tation modeling for long-form speech translation while signifi-
cantly reducing the number of model parameters. We propose
that the ASR-with-punctuation task [24, 25], the joint task of
speech recognition and punctuation prediction, is an effective
pre-training task for the segmentation model. In addition, we
show that tuning the segmentation model at inference time is
essential to the overall translation quality, and provide an anal-
ysis of the mismatch between the segmentation model and ST
system.

Our contributions are as follows:
• We propose a pre-training strategy for the segmentation

model using the ASR-with-punctuation task and show that
the proposed pre-training strategy improves the segmentation
accuracy and the final translation quality.

• We show that reducing the mismatch between the segmenta-
tion model and ST systems is crucial, due to varying charac-



teristics among ST systems.
• We demonstrate that the proposed segmentation model

achieves better translation quality than the prior methods, and
its size is 8% to 14% smaller than that of the previous works.

2. Architecture
We formulate the audio segmentation task as a frame-level clas-
sification task, following previous works [20, 21, 22]. The
segmentation model is trained to predict a frame-level label
sequence for a fixed-length audio input. The label sequence
(l1, · · · , lT ) consists of the binary label lt ∈ {0, 1}, which in-
dicates whether the t-th frame is a part of segment (lt = 1) or
not (lt = 0).

The model consists of an encoder layer and a linear layer.
First, the model converts a sequence of acoustic features to a
sequence of output vectors (e1, · · · , eT ), where et ∈ RD rep-
resents the t-th output vector. Conformer-M [26] architecture
is used for the encoder layer, which accepts log-mel acoustic
features and gives the output sequence with a 40ms stride.

The output vector et transformed to a probability pt by a
linear layer. The value pt indicates the probability that t-th
frame is a part of the segment, and it is computed as:

pt = sigmoid(LinearD→1(et)).

During training, the cross-entropy loss is used to match pt to
the segmentation label lt. The length of the input audio is 20
seconds following prior works [20, 22].

Note that the model size is much smaller than the those of
previous works. SHAS [20] has 201M parameters and SHAS-
FTPT [22] has 349M parameters, as they are based on XLS-
R [27], a large self-supervised wav2vec 2.0 [23] model. On
the other hand, our model has 27.3M parameters, which are
only 14% of SHAS and 8% of SHAS-FTPT. Consequently, the
model is more suitable for lightweight applications including
streaming and on-device scenarios.

2.1. Inference

At inference time, the long-form audio is partitioned into fixed-
size chunks of 20 seconds, with 2-second of overlap. For over-
lapped frames, the two probability values are averaged. Then,
the output probability sequence is processed into a list of seg-
ments.

For the processing, SHAS [20] introduces pDAC (proba-
bilistic Divide-And-Conquer), which recursively splits a large
segment into smaller segments. pDAC has two hyper-
parameters minlen and maxlen so that the resulting seg-
ment is always longer than minlen and shorter than maxlen.
pDAC has a drawback in that it often produces segments longer
than oracle segments [22] because it tends not to split a segment
shorter than maxlen.

SHAS-FTPT [22] proposes pTHR, a threshold-based algo-
rithm, which also ensures the length of the segment is between
minlen and maxlen. pTHR has a drawback in that if the pre-
dicted segment is longer than maxlen, it is split into fixed-size
segments of maxlen.

To this end, we use a simple algorithm as follows:
• The predicted probability pt is converted to a binary label
lt = I[pt > 0.5] and consecutive positive labels form a seg-
ment.

• Segments shorter than minlen are discarded.
• Segments longer than maxlen are split at t̂-th position,

where t̂ = argmint(pt).

(a) Oracle

… and anarchists took over our house. A lot of our friends thought …

(b) w/o pretraining

(c) with pretraining

ASR results: … and anarchists took over our house. Most of our friends think …

… and anarchists Take over our house, my friends we’re …ASR results:

Figure 1: (a) Oracle segmentation and its corresponding ref-
erence text. (b) prediction of segmentation model without pre-
training, and its corresponding ASR results. (c) prediction of
segmentation model with pre-training, and its corresponding
ASR results. ASR errors are colored red. See Section 3 for
details.

• Following the previous methods [20, 22], we expanded each
segment by 0.06 seconds.

We found that maxlen is an important hyper-parameter that
should be tuned for integrating the segmentation model and un-
derlying ST system. See Section 4 for discussion and Section 5
for experiments.

3. Pre-training via ASR-with-punctuation
The ASR-with-punctuation task aims to recognize text and pre-
dict punctuation at the same time [28, 24, 25, 13]. In particular,
recent works [24, 25] showed that ASR models based on Con-
nectionist Temporal Classification (CTC) [29] are suitable for
ASR-with-punctuation with high accuracy.

CTC has a characteristic that the model predicts a text label
for each frame (including a special label <blank>, which in-
dicates no label corresponds to the frame), and the position of
the predictive label is well-aligned to the corresponding speech
utterance [30]. Thus, the behavior of the CTC model is closely
related to the segmentation task.

We argue that both the ASR-with-punctuation task and
the sentence-level segmentation task require understanding the
grammar of sentences to certain degree. Some punctuation
marks, including period ⟨.⟩ and question mark ⟨?⟩, indicate the
end of the sentence. To predict them, the CTC model needs to
understand where the sentence boundaries are. Also, the frame
that predicts such marks is likely to be the position in which the
segment of the sentence ends.

On the other hand, a spoken sentence may contain long
pauses between utterances. In this case, the CTC model should
not emit end-of-sentence marks during pauses, and the segmen-
tation model should not partition the sentence at pauses as well.

Therefore, we expect that the CTC model with punctuation
prediction learns features related to sentence structure, which
are also helpful for sentence-level segmentation. To this end,
we propose to pre-train the encoder of the segmentation model
with punctuation CTC task.

Following [25], we concatenate two segments of the ASR
corpus at training time. This prevents the ASR model from pre-
dicting period symbol ⟨.⟩ at the end regardless of input, as the
symbol is placed at the end of the sentence in many ASR cor-
pus. We apply Intermediate CTC [31] following previous works
on ASR-with-punctuation [24, 25].

Figure 1 shows two segmentation results with their corre-
sponding ASR transcriptions, one from the model without pre-
training and the other with pre-training. Without pre-training,
the model relies on pauses for segmentation, causing mis-
segmentation around the phrase “took over our house”. This
also leads to a critical mis-transcription (“Take over our house”),
as the phrase is not a proper sentence, while the ASR model



(a) maxlen=20

(b) maxlen=10

ASR results:

ASR results: The other volunteer who …
… let’s call him Lex Luthor,

The other volunteer who …
… let’s call him Lex Luthor

got to the captain first and …
… save the homeowner’s dog

The dog. I was
stunned with jealousy.

The dog! I was …
(missing)

got to the captain first and … 
… save the homeowner’s dog. 

Figure 2: Segmentation and corresponding ASR results with two
different maxlen configurations. Note that the two results are
inferred from the same segmentation model. See Section 4 for
details.

is likely to be trained with complete sentences. More im-
portantly, incomplete sentences from the mis-segmentation are
more prone to mis-translation due to missing information [7].

On the other hand, the pre-trained model does not rely only
on long pauses. It successfully predicts the sentence bound-
ary, which also leads to fewer transcription errors in the ASR
model. This illustrates the segmentation ability based on the
speech content, not only the acoustic statistics. We show exper-
imental results that pre-training improves the overall translation
quality in Section 5.

4. Integration to speech translation system
Due to the variety in model architectures and training condi-
tions, ST systems require specific conditions of input speech
segment for high-quality translation. Importantly, if the audio
segmentation is mismatched to the segmentation used to train
the ST system, its translation quality may be significantly de-
graded [7, 6].

There are two well-known failure cases due to the mis-
match. If the speech segment input is too long or contains too
many sentences, the ST model may fail to translate and drop
a significant part of the input, causing deletion errors [7]. On
the other hand, if the segment is too short, it may not contain
a complete sentence, which leads to significant addition errors,
also called as hallucination [9, 8, 7]. Also, the exact notation
of sentence boundary varies over translation corpora and target
domains, contributing to the mismatch problem [7, 32, 33, 34].
Therefore, to prevent such failure modes, it is essential to match
the segmentation model and ST model so that the segmentation
model produces speech segments that the ST model can handle
well.

At the inference time, there is a hyper-parameter maxlen
regarding the maximum length of the speech segment, as de-
scribed in Section 2.1. The hyper-parameter can be tuned to
reduce the mismatch between the segmentation model and the
ST system. If the segment produced by the segmentation model
is longer than maxlen, it is partitioned into smaller segments.
We found that the partitioned segments tend to contain near-
complete sentences rather than incomplete phrases. This is be-
cause the pre-training task proposed in Section 3 improves the
understanding of sentence-level boundaries and prevents non-
linguistic splits at long pauses.

Figure 2 shows an example of segmentation configuration
and corresponding ASR results, where the ASR model in use
tends to require short segments for better recognition accuracy.
The two results are inferred from the same segmentation model,
except that the first setting (a) uses maxlen 20 and the second
setting (b) uses maxlen 10. The setting (a) yields a long seg-
ment that matches the oracle segmentation. However, the ASR
model is not able to handle such long input, causing deletion
errors towards the end of the segment.

On the other hand, the setting (b) forces the segmentation

model to yield short segments. As a result, the audio is split into
three segments, and the third segment still contains a complete
sentence. The first two segments contain incomplete phrases,
as it is impossible to split the sentence. Nonetheless, setting (b)
gives a better translation overall, as the last sentence is correctly
recognized.

Note that the example is specific to the ASR model in use
– when the other ST model is used, the ST model successfully
produces high-quality translation results for the long segment.
We show experimental results with various ST systems in Sec-
tion 5.

5. Experiments
MuST-C [35] is a multilingual speech corpus that can be used
for automatic speech recognition (ASR), speech translation
(ST), and audio segmentation tasks. It consists of long-form
speech of English TED Talks, sentence-level segmentation la-
bels, transcription (with punctuation) and translation for each
segment.

For the segmentation task, we use two language pairs of
MuST-C v2, English-German (En-De) and English-Japanese
(En-Ja). For the pre-training task in Section 3, we use the En-
glish transcription of En-De pairs.

We evaluate the segmentation models on the En-De and En-
Ja ST tasks. For the En-De ST task, we employ two ST systems.
The first is the Fairseq-ST1 [36] E2E ST model, which has also
been used in prior works [20, 22]. The second is SeamlessM4T-
v22 [37]. The model supports English ASR, En-De MT, and
En-De E2E ST. We employ the ASR and MT models for the
cascaded ST system, as its translation quality is significantly
better than the one of the E2E ST model, and it is possible to
measure the accuracy of the ASR task as well as the ST task.

For the En-Ja ST task, we employ SeamlessM4T-v2 for the
ASR model and employ two En-Ja MT models, SeamlessM4T-
v2 and JParaCrawl3 [38], for cascaded ST.

For evaluating the ST system for long-form speech, mw-
erSegmenter [39] is used to re-align the results of ASR and ST
models to the reference text. Then, sacreBLEU [40] is used to
measure BLEU scores [41]. For cascaded ST, we also measure
word error rates (WERs) of the ASR model.

We compare our segmentation model to SHAS4 [20] (En-
De and En-Ja) and SHAS-FTPT5 [22] (En-De) using the model
parameters released by the authors.

For the choice of maxlen, we evaluate the segmentation
model for two ST systems using 8, 10, 15, 20, and 30 sec-
onds and report the best result for each ST system. For SHAS
and SHAS-FTPT, we also evaluate the models with maxlen
reported in the papers. For minlen, we use 0.2 seconds fol-
lowing SHAS and SHAS-FTPT.

5.1. Results

Table 1 shows the evaluation results for the En-De task. We
found our model consistently outperforms the baseline mod-
els, whereas the number of parameters in our model (27.3M)

1https://github.com/facebookresearch/fairseq/
tree/main/examples/speech_text_joint_to_text,
En-De MuST-C model

2https://github.com/facebookresearch/
seamless_communication, seamlessM4T v2 large model

3En-Ja big model
4https://github.com/mt-upc/SHAS
5https://github.com/ahclab/Wav2VecSegmenter



Table 1: Results of MuST-C En-De speech translation.

max Fairseq-ST SeamlessM4T-v2
Segmentation #param len BLEU↑ WER%↓ BLEU↑

Oracle 26.90 14.58 29.49

SHAS 201M 10 24.99 14.70 27.89
20 25.57 23.61 25.09

SHAS-FTPT 349M 15 25.95 17.00 28.13
28 26.30 17.98 27.70

Proposed 27.3M 10 25.78 12.85 28.80
20 26.66 15.51 28.45

Table 2: Results of MuST-C En-Ja speech transla-
tion. “JParaCrawl” indicates the cascade ST system of
SesmlessM4T-v2 ASR and JParaCrawl MT models.

max SeamlessM4T-v2 JParaCrawl
Segmentation #param len WER%↓ BLEU↑ BLEU↑

Oracle 12.91 10.16 11.91

SHAS 201M 8 13.56 9.03 11.34
18 21.90 8.44 11.59

Proposed 27.3M 10 12.45 10.08 11.65
20 14.49 9.70 11.83

is much smaller than the baseline models (201M and 349M).
We found Fairseq-ST and SeamlessM4T-v2 require differ-

ent maxlen for the best accuracy – maxlen = 20 for Fairseq
and maxlen = 10 for SeamlessM4T-v2. Figure 3 shows En-
De BLEU scores for various maxlen. It shows that the BLEU
score decreases by 1.5 BLEU points if maxlen is not tuned
properly.

Table 2 shows the evaluation results for the En-Ja task.
Similar to En-De, our model performs consistently better than
the baseline model, and SeamlessM4T-v2 MT yields the best
BLEU for shorter maxlen while JParaCrawl MT does for
longer maxlen.

For the SeamlessM4T-v2 ASR task, we found shorter
maxlen leads to lower WER. Note that the WER of
maxlen = 10 is even lower than the WER of oracle segmen-
tation for both En-De and En-Ja. This is because the oracle seg-
mentation contains long segments, causing deletion errors on
SeamlessM4T-v2. When maxlen = 8, we obtained the lowest
WERs of 12.35 for En-De and 11.70 for En-Ja.

However, for the following MT task, short maxlen and
low WER do not necessarily improve the BLEU score. We
found the best BLEU scores are obtained from maxlen = 10
for the SeamlessM4T-v2 MT model and maxlen = 20 for the
JParaCrawl MT model. This could be explained by the fact that
some non-critical ASR errors (e.g., “went and met” becomes
“went to meet”) do not necessarily cause fatal translation errors,
and MT models generally require long input for better transla-
tion.

The overall results highlight that each ST system has dif-
ferent requirements for the translation quality, and for cascaded
ST, it depends on the both the ASR and MT models. There-
fore, for reliable evaluation of segmentation models, employing
multiple ST systems for measurement is important.

For the effectiveness of ASR pre-training in Section 3, we
measure BLEU scores of two segmentation models, with or
without ASR pre-training. The result is shown in Figure 3. We

10 20 30
segment max length (s)

24

25

26

27

BL
EU

Fairseq

Proposed
w/o pretraining

10 20 30
segment max length (s)

27

28

29

BL
EU

SeamlessM4T-v2

Figure 3: En-De BLEU scores for various maxlen.

Table 3: Punctuation F1 scores of SeamlessM4T-v2 ASR.

Punctuation F1 ↑ (%)
Segmentation #param avg. ⟨.⟩ ⟨?⟩ ⟨,⟩

Oracle 75.60 84.43 76.06 66.31

SHAS 201M 65.15 69.59 66.82 59.03
SHAS-FTPT 349M 65.50 71.59 66.67 58.23

Proposed 27.3M 67.79 73.62 69.91 59.84

see the ASR pre-training consistently improves BLEU on the
two ST systems.

5.2. Evaluation of ASR punctuation prediction

For the ASR-with-punctuation task, wrong audio segmentation
can lead to incorrect punctuation mark predictions, as the punc-
tuation mark is difficult to predict correctly if the segment does
not contain a complete sentence. For example, Figure 1 (a)
shows that the ASR model replaces a period ⟨.⟩ with a comma
⟨,⟩ for incorrect segmentation.

To this end, we measure F1 scores of three punctuation
marks, period ⟨.⟩, question mark ⟨?⟩, and comma ⟨,⟩ of
SeamlessM4T-v2 ASR results from various segmentation mod-
els used in Section 5.1. Following prior works on ASR-with-
punctuation [24, 25], the output of the ASR model is aligned to
the reference text for measurement.

Table 3 shows the punctuation F1 scores of ASR results for
the segmentation methods. It shows that our model consistently
outperforms baseline models for three punctuation marks, im-
plying the ability to understand sentence structure. This, in turn,
improves the ST performance.

6. Conclusion
We propose a lightweight end-to-end audio segmentation mod-
eling for improving the quality of long-form speech translation.
We propose to use ASR-with-punctuation as a pre-training task
for audio segmentation and show experimental improvements.
We emphasize the need for the match between the segmenta-
tion model and the speech translation system to achieve op-
timal translation quality, and show that tuning the inference-
time hyper-parameter reduces the mismatch problem. Further-
more, we show the proposed segmentation model achieves bet-
ter translation quality with a model size of only 8% to 14% of
the baseline models.



7. References
[1] H. Ney, “Speech translation: Coupling of recognition and transla-

tion,” in Proc. ICASSP, 1999.

[2] A. Berard, O. Pietquin, C. Servan, and L. Besacier, “Listen and
translate: A proof of concept for end-to-end speech-to-text trans-
lation,” 2016.

[3] R. J. Weiss et al., “Sequence-to-Sequence Models Can Directly
Translate Foreign Speech,” in Proc. Interspeech, 2017.

[4] M. Sperber and M. Paulik, “Speech translation and the end-to-end
promise: Taking stock of where we are,” in Proc. ACL, 2020.

[5] M. Agarwal et al., “Findings of the IWSLT 2023 evaluation cam-
paign,” in Proc. IWSLT, 2023.

[6] E. Salesky et al., “Evaluating multilingual speech translation un-
der realistic conditions with resegmentation and terminology,” in
Proc. IWSLT, 2023.

[7] R. Wicks and M. Post, “Does sentence segmentation matter for
machine translation?” in Proc. WMT, 2022.

[8] V. Raunak, A. Menezes, and M. Junczys-Dowmunt, “The curi-
ous case of hallucinations in neural machine translation,” in Proc.
NAACL-HLT, 2021.

[9] K. Lee et al., “Hallucinations in neural machine translation,”
2018.

[10] T. Potapczyk and P. Przybysz, “SRPOL’s system for the IWSLT
2020 end-to-end speech translation task,” in Proc. IWSLT, 2020.

[11] M. Gaido, M. Negri, M. Cettolo, and M. Turchi, “Beyond voice
activity detection: Hybrid audio segmentation for direct speech
translation,” in Proc. ICNLSP, 2021.

[12] G. I. Gállego et al., “End-to-end speech translation with pre-
trained models and adapters: UPC at IWSLT 2021,” in Pro.
IWSLT, 2021.

[13] A. Radford et al., “Robust speech recognition via large-scale weak
supervision,” in Proc. ICML, 2023.

[14] E. Cho, J. Niehues, and A. Waibel, “Segmentation and punctua-
tion prediction in speech language translation using a monolingual
translation system,” in Proc. IWSLT, 2012.

[15] D. Wan et al., “Segmenting subtitles for correcting ASR segmen-
tation errors,” in Proc. EACL, 2021.

[16] T. Yoshimura, T. Hayashi, K. Takeda, and S. Watanabe, “End-
to-end automatic speech recognition integrated with CTC-based
voice activity detection,” in Proc. ICASSP, 2020.

[17] W. R. Huang et al., “E2E segmentation in a two-pass cascaded
encoder ASR model,” in Proc. ICASSP, 2023.

[18] P. Polák and O. Bojar, “Long-form end-to-end speech translation
via latent alignment segmentation,” 2023.

[19] Y. Shu et al., “A CIF-based speech segmentation method for
streaming E2E ASR,” IEEE Signal Processing Letters, 2023.

[20] I. Tsiamas, G. I. Gállego, J. A. R. Fonollosa, and M. R. Costa-
jussà, “SHAS: Approaching optimal Segmentation for End-to-
End Speech Translation,” in Proc. Interspeech, 2022.

[21] R. Fukuda, K. Sudoh, and S. Nakamura, “Speech Segmentation
Optimization using Segmented Bilingual Speech Corpus for End-
to-end Speech Translation,” in Proc. Interspeech, 2022.

[22] ——, “Improving speech translation accuracy and time efficiency
with fine-tuned wav2vec 2.0-based speech segmentation,” TASLP,
2024.

[23] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” in Proc. NeurIPS, 2020.

[24] J. Nozaki, T. Kawahara, K. Ishizuka, and T. Hashimoto, “End-
to-end Speech-to-Punctuated-Text Recognition,” in Proc. Inter-
speech, 2022.

[25] H. Kim, S. Seo, L. Lee, and S. Baek, “Improved Training for End-
to-End Streaming Automatic Speech Recognition Model with
Punctuation,” in Proc. Interspeech, 2023.

[26] A. Gulati et al., “Conformer: Convolution-augmented transformer
for speech recognition,” in Proc. Interspeech, 2020.

[27] A. Babu et al., “XLS-R: Self-supervised cross-lingual speech rep-
resentation learning at scale,” 2021.

[28] M. Mimura, S. Sakai, and T. Kawahara, “An end-to-end model
from speech to clean transcript for parliamentary meetings,” in
Proc. APSIPA, 2021.

[29] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proc. ICML,
2006.

[30] L. Kürzinger et al., “CTC-segmentation of large corpora for ger-
man end-to-end speech recognition,” in International Conference
on Speech and Computer, 2020.

[31] J. Lee and S. Watanabe, “Intermediate loss regularization for ctc-
based speech recognition,” in Proc. ICASSP, 2021.

[32] B. Minixhofer et al., “Where’s the point? self-supervised mul-
tilingual punctuation-agnostic sentence segmentation,” in Proc.
ACL, 2023.

[33] E. Matusov, P. Wilken, and Y. Georgakopoulou, “Customizing
neural machine translation for subtitling,” in Proc. WMT.

[34] I. Tsiamas, J. Fonollosa, and M. Costa-jussà, “SegAug-
ment: Maximizing the utility of speech translation data with
segmentation-based augmentations,” in Proc. EMNLP 2023,
2023.

[35] M. A. Di Gangi et al., “MuST-C: a Multilingual Speech Transla-
tion Corpus,” in Proc. NAACL-HLT, 2019.

[36] M. Ott et al., “fairseq: A fast, extensible toolkit for sequence mod-
eling,” in Proc. ACL (Demonstrations), 2019.

[37] L. Barrault et al., “Seamless: Multilingual expressive and stream-
ing speech translation,” 2023.

[38] M. Morishita, J. Suzuki, and M. Nagata, “JParaCrawl: A
large scale web-based English-Japanese parallel corpus,” in Proc.
LREC, 2020.

[39] E. Matusov, G. Leusch, O. Bender, and H. Ney, “Evaluating ma-
chine translation output with automatic sentence segmentation,”
in Proc. IWSLT, 2005.

[40] M. Post, “A call for clarity in reporting BLEU scores,” in Proc.
WMT, 2018.

[41] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proc. ACL,
2002.


	 Introduction
	 Architecture
	 Inference

	 Pre-training via ASR-with-punctuation
	 Integration to speech translation system
	 Experiments
	 Results
	 Evaluation of ASR punctuation prediction

	 Conclusion
	 References

