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ABSTRACT

The objective of this work is effective speaker diarisation using multi-scale
speaker embeddings. Typically, there is a trade-off between the ability
to recognise short speaker segments and the discriminative power of the
embedding, according to the segment length used for embedding extraction.
To this end, recent works have proposed the use of multi-scale embeddings
where segments with varying lengths are used. However, the scores are
combined using a weighted summation scheme where the weights are
fixed after the training phase, whereas the importance of segment lengths
can differ within a single session.

To address this issue, we present three key contributions in this paper: (1)
we propose graph attention networks for multi-scale speaker diarisation; (2)
we design scale indicators to utilise scale information of each embedding;
(3) we adapt the attention-based aggregation to utilise a pre-computed
affinity matrix from multi-scale embeddings.

We demonstrate the effectiveness of our method in various datasets
where the speaker confusion which constitutes the primary metric drops
over 10% in average relative compared to the baseline.

Index Terms— Speaker Diarisation, Multi-scale, Graph Attention
Networks.

1. INTRODUCTION

Speaker diarisation is a task of partitioning audio clips (i.e., sessions)
into homogeneous speaker segments, essentially solving the problem
of “who spoke when”. It is an important pre-processing step for many
speech-related tasks, such as transcribing meetings or movie scripts.

Recent work on speaker diarisation can be divided into two strands. The
first is end-to-end based methods [1–3], which have received increasing at-
tention recently. Although these works have shown promise in limited envi-
ronments, they have been reported not to generalise well to real-world condi-
tions. The second strand employs multiple conventional modules, compris-
ing a multi-stage pipeline. While the stages differ by the systems, they typi-
cally consist of speech activity detection, speaker embedding extraction, and
clustering. Researches in this strand are focused on optimising the pipeline.

In particular, the quality of speaker embedding plays a crucial role in the
performance of speaker diarisation systems. In general, speaker embeddings
produced from longer segments are more discriminative. However, since
these embeddings are more likely to contain multiple speakers, they are
more vulnerable to rapid speaker transitions. Deriving speaker embeddings
from a short duration mitigates this issue, but, their discriminative power is
known to be weaker. Because of this trade-off, recent literature in speaker di-
arisation adopts a window of 1.5 seconds for extracting speaker embeddings.

A few works have addressed this issue by using multi-scale speaker
embeddings where the different scales refer to the duration of audio for
embedding extraction [4,5]. Different scales are combined using weights
assigned to each scale. Various techniques have been introduced to derive

these weights. However, none of these works involves adaptive mechanisms
that can assign weights dynamically. Thus, once the weights are fixed,
it is applied to entire sessions. Because of the limitation of the existing
framework, speaker embeddings can only be compared with embeddings
where the scale is identical. This work proposes to address these limitations.

In this study, we propose several techniques on top of the existing
multi-scale speaker embedding framework. Specifically, we introduce a
graph attention network (GAT) [6] in place of weighted summation when
merging multi-scale speaker embeddings. The graph attention networks
can model non-Euclidean relations between speaker embeddings with
different scales where each embedding is set as a node.

Our approach can compare embeddings with different scales where
the weights are dynamically assigned via the attention mechanism. It can
even assign different weights within a single session which improves the
flexibility. A novel scale indicator, inspired by positional encoding [7,8],
is also proposed. We additionally extend the attention-based aggregation
method, introduced in our previous work [9], by modifying the mechanisms
towards multi-scale. We expect that it would be a novel application of
multi-scale embeddings in the speaker diarisation.

We validate our approach using a wide range of datasets, DIHARD
I, II and III test sets, as well as the VoxConverse dataset. Consistent
improvement in all scenarios is observed, demonstrating the effectiveness
of our approach.

2. MULTI-SCALE SPEAKER DIARISATION PIPELINE

In this section, we describe the overall process pipeline of speaker diarisation
using multi-scale speaker embeddings. The overall structure is illustrated
in Figure 1. Speech segments are extracted from the input audio via SAD.
Uniform segmentation is performed for all speech segments extracted using
different time scales. Speaker embeddings are extracted for each scale
segment. We then construct an affinity matrix based on these speaker em-
beddings. The resulting affinity matrix is used for clustering, the final step
in the pipeline. The details of each step are explained through subsections.

2.1. Speech activity detection

The speech activity detection (SAD) module is located at the front of the
speaker diarisation pipeline. It performs segmentation regardless of speaker
identity. The output of the SAD module is denoted using onsets and offsets
of each segment where overlaps and speaker changes can be involved.
We employ a convolutional recurrent neural network-based SAD module
which has an identical architecture to that of our previous work [10]. We
further apply a sliding window on the module’s output to decide onsets and
offsets where an onset is determined when more than 70% of a window
is predicted as speech and vice versa for an offset.
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Fig. 1. Multi-scale speaker diarisation pipeline.

2.2. Multi-scale segmentation

Using the SAD module’s output, we split each segment into groups of
shorter segments where the shorter segments in each group have an equal
duration (i.e., scale) and different groups have different scales. This
multi-scale segmentation uses four hyper-parameters: number of scales,
segment scale defined by window size and shift size, base-scale which
determines the unit of clustering and labeling, and segment mapping
criterion which defines how to map between segments from different scales.
We employ the method introduced in [4]. We use three different scales.
The window sizes for each scale are 0.5s, 1.0s, and 1.5s, and the shift sizes
are 0.25s, 0.25s, and 0.16s, respectively. We use the scale of 0.5s window
size as a base-scale. For segment mapping, we select the segment with
the closest midpoint as suggested in [4].

2.3. Speaker embedding extraction

Speaker embeddings are derived for each and every segment divided via the
multi-scale segmentation. We build our speaker embedding extraction mod-
ule on top of that we used in our previous work [9], which is a variant of [11].
Three additional techniques are additionally employed in the training phase.

First, we use mixup [12] which generates augmented training samples
using a weighted summation of two different speakers’ utterances and
a corresponding soft-label. Second, we propose a new augmentation
technique by connecting two different speakers’ utterances also trained
with soft-labels. Lastly, each mini-batch is constructed using one of the
scales among the utilised multi-scales.

The former two techniques aim to counteract towards segments that
include overlaps or speaker changes whereas the last technique is applied
to facilitate multi-scale speaker embedding extraction.

2.4. Clustering

We assign a speaker label for each segment via spectral clustering [13,14]
using the speaker embeddings. Spectral clustering has been widely adopted
in speaker diarisation pipelines. It is considered as a manifold-based
clustering technique, where results highly depend on the quality of the
affinity matrix. Elements of the affinity matrix represent the similarity
between two speech segments.

Fig. 2. Overview of proposed GAT-based similarity measure.

Various methods can be used to measure the similarity when construct-
ing the affinity matrix M using multi-scale speaker embeddings. An
existing work applies weighted summation of cosine similarities of each
scale segment pair introduced in [4].

mij=Sim(Si,Sj)=w0.5∗cos(ei,0.5,ej,0.5)
+w1.0∗cos(ei,1.0,ej,1.0)
+w1.5∗cos(ei,1.5,ej,1.5),

(1)

where Si is the i′th segment, ei,s∈Rd is the embedding extracted i′th
segment at scale s, andws∈R is weight factor for scale s.

This method is used as the baseline of our work.

3. PROPOSED GAT MODULE

In this section, we address our novel GAT module that inputs multi-scale
speaker embeddings and outputs an integrated, single value composing the
affinity matrix. We first introduce our variant of the original GAT architec-
ture, which has been successfully adopted to speaker verification and spoof-
ing detection in our previous works [15–18]. Then, we address how we
derive an integrated affinity matrix using multi-scale speaker embeddings.

The purpose of the GAT used in this work is to calculate similarity
Sim(Si,Sj) where Si and Sj are the i′th and j′th segment, respectively.

Sim(Si,Sj)=GAT(G). (2)

First, we construct a graph G using multiple embeddings from two
segments as:

G={MSi,MSj}, (3)

whereMSi={ei,0.5,ei,1.0,ei,1.5} is the set of multi-scale embeddings
extracted from the i′th segment.

However, since the existing GAT architecture cannot utilise the scale
information of each embedding, a scale indicator is proposed. The scale
indicator involves three vectors, each corresponding to one among three
scales (0.5s, 1.0s, and 1.5s). These vectors are learnable parameters like the
rest of the parameters within the model. We integrate scale indicators into
the GAT model using an element-wise addition between each node and
its corresponding scale indicator. Through this mechanism, we leverage
our prior knowledge on which scale the speaker embedding (node) is
extracted from. The dimension of the scale indicator is identical to that
of input nodes to make element-wise addition applicable. This technique
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is inspired by the positional encoding of the Transformer [7,8]. With the
scale indicator, the node representation hu is defined as:

hu=ei,s⊕ls, (4)
where hu refers the node representation of node u and vector ls is scale
indicator for each scale s.

Since it is difficult to pre-define the relationship between each node like
in the previous research, it is assumed that all nodes are connected (i.e.,
all possible edges exist), including self-connections. Instead, the relations
between nodes are defined by an attention mechanism assigning a weight
for each edge using learnable parameters. In particular, the attention value
αu,v between node u and v is defined as:

αu,v=
exp(g(hu,hv))∑
k∈Gexp(g(hu,hk))

, (5)

where the attention function g(·,·) is defined as following:

g(hu,hv)=

{
(hu⊗hv)w1, if u∈U(v)
(hu⊗hv)w2, otherwise

where w1 and w2 are the weight vectors for each case,⊗ is the element-
wise multiplication, and U(v) is a set of nodes from the same segment.
Different from the previous approach which only compares pairs of the
same scale, the attention function defined above allows comparisons
between different scales because it considers all possible node pairs. In
addition, by using two attention parameters (w1 and w2), it is possible
to perform aggregation between discriminative nodes within the same
segment while comparing nodes from the different segments.

Finally, the similarity between the two segments calculated through the
above steps is used to construct the affinity matrix. After constructing the
affinity matrix, clustering can be performed as described in the previous
section 2.4. The node configuration and operation of the GAT is common
to that of the GAT structure applied to speaker verification and spoofing
detection [15–17].

4. ATTENTION-BASED FEATURE ENHANCEMENT

Our previous work [9] refines single-scale speaker embeddings before con-
structing the affinity matrix, referred to as attention-based embedding aggre-
gation (AA). Although this technique brings performance improvement in a
stable manner, it cannot be applied to multi-scale speaker embeddings. We
thus adapt AA towards multi-scale framework as described in Algorithm 1.

The proposed algorithm utilises two affinity matrices: multi-scale M,
described in Section 2 and single-scale C. Elements of both matrices
represent the speaker similarity between two speech segments. However,
there is a difference in how to measure similarity. Elements of M are
derived using our proposed GAT model, whereas elements of C are derived
via a cosine similarity.

However, affinity matrix (C) is constructed by speaker embeddings in
base-scale (0.5s) segments may not be as good due to its embedding quality.
To overcome this issue, we match the shape by replacing base-scale speaker
embeddings with larger-scale speaker embeddings X when constructing
C. For example, a base-scale embedding that represents 2.0s - 2.5s is
replaced with a large-scale speaker embedding that represents 1.5s - 3.0s.
The objective is to make C in Algorithm 1 credible.

We use each affinity matrix to construct an attention map. A1 is
constructed from the affinity matrix M and A2 is constructed from the
affinity matrix C (lines 5-6). We then create an attention map A by adding
the weights of the two attention maps (line 7). The weight values of both
matrices change with each step. We first construct the attention map A so
that A1 has a higher weight, and then we gradually build up the attention
map A so that A2 has a higher weight relative to A1.

Algorithm 1 Multi-scale attention based feature enhancement

1: Input: Larger-scale speaker embeddings X∈RL×256, multi-scale
affinity matrix M∈RL×L

2: Hyper-parameters: Number of repetitionN , Temperature value τ
3: for i=0,1,...,N−1 do
4: Construct affinity matrix C|ci,j=cos(Xi,Xj)
5: A1 = softmax(M * τ)
6: A2 = softmax(C* τ)
7: A = ((N - i) * A1 + i * A2) /N
8: X = dot(A, X)
9: end for

5. EXPERIMENTS AND RESULTS

We conduct experiments to evaluate the performance of multi-scale
diarisation pipelines on various datasets: the test set of the first, second,
third DIHARD challenge [19–21] and VoxConverse [22].

5.1. Evaluation protocol

We use the DER (Diarisation Error Rate) as a primary metric. The DER
consists of three components: False alarm (FA, speech in prediction but
not in reference), Missed speech (MS, speech in reference but not in
prediction), Speaker confusion (SC, speech assigned to wrong speaker ID).
We use the dscore1 to measure the performance.

In order to test VoxConverse, we conduct experiments under the
condition of using system SAD, and in this case, we use 250ms as the
collar. For the DIHARD dataset, experiments are performed under the
condition provided with a reference SAD, and we use 0 ms as the collar.

5.2. Implementation details

5.2.1. Clustering

The clustering stage of our diarisation pipeline requires a threshold for
eigenvalues. We tune the threshold for each dataset based on empirical
evaluations; the values are 48, 38, 48, and 80 for DIHARD I, DIHARD
II, DIHARD III, and VoxConverse, respectively.

5.2.2. Attention-based feature enhancement

AA requires two hyperparameters: the temperature value and the number
of repetitions. We use 0.30 as the temperature value for all datasets. Use a
different value for each dataset for the number of repetitions. Actual values
are 10 for DIHARD I, 20 for DIHARD II, 10 for DIHARD III, and 15
for VoxConverse.

5.2.3. Graph attention networks

Creating training data and label. As with the speaker verification
datasets [27,28], we construct a training dataset containing speaker pairs
and labels. These pairs are extracted from RTTM files of the development
data of speaker diarisation datasets. It uses speakers from RTTM to form
a speaker pair. For each RTTM, all combinations of two speakers are
selected and then multi-scale speech segments with the same midpoint
are extracted. We use the DIHARD I, II, III development sets [19–21],
VoxConverse development sets [22], ICSI datasets [29], AMI datasets [30],
and internal conversation datasets as source data. We also conduct data
augmentations following recipes: applying room impulse response [31,32],

1https://github.com/nryant/dscore
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Table 1. Results on the DIHARD I, II, III and VoxConverse test sets.
(FA: false alarm, MS: miss, SC: speaker confusion, lower is better for all
four metrics). Except for GAT + AA, all configuration with AA use the
original version of AA [9].

Configuration DER FA MS SC
DIHARD I

Baseline (0.5s) 31.40 0.0 8.71 22.69
Baseline (1.0s) 25.46 0.0 8.71 16.75
Baseline (1.5s) 24.60 0.0 8.71 15.88
Cosine Fusion 25.89 0.0 8.71 17.18
GAT 23.26 0.0 8.71 14.55
Baseline (0.5s) + AA 31.68 0.0 8.71 22.97
Baseline (1.0s) + AA 22.29 0.0 8.71 13.58
Baseline (1.5s) + AA 20.54 0.0 8.71 11.83
Cosine Fusion + AA 23.44 0.0 8.71 14.72
GAT + AA 19.00 0.0 8.71 10.29
Challenge Winner [23] 23.73 - - -

DIHARD II
Baseline (0.5s) 35.61 0.0 9.69 25.93
Baseline (1.0s) 27.60 0.0 9.69 17.91
Baseline (1.5s) 27.87 0.0 9.69 18.18
Cosine Fusion 28.13 0.0 9.69 18.44
GAT 22.85 0.0 9.69 13.16
Baseline (0.5s) + AA 35.28 0.0 9.69 25.59
Baseline (1.0s) + AA 22.77 0.0 9.69 13.08
Baseline (1.5s) + AA 21.47 0.0 9.69 11.78
Cosine Fusion + AA 23.10 0.0 9.69 13.41
GAT + AA 19.80 0.0 9.69 10.12
Challenge Winner [24] 18.42 - - -

DIHARD III
Baseline (0.5s) 25.80 0.0 9.52 16.28
Baseline (1.0s) 20.08 0.0 9.52 10.56
Baseline (1.5s) 19.93 0.0 9.52 10.40
Cosine Fusion 20.48 0.0 9.52 10.96
GAT 18.32 0.0 9.52 8.79
Baseline (0.5s) + AA 25.01 0.0 9.52 15.49
Baseline (1.0s) + AA 17.50 0.0 9.52 7.98
Baseline (1.5s) + AA 17.04 0.0 9.52 7.52
Cosine Fusion + AA 18.25 0.0 9.52 8.73
GAT + AA 17.35 0.0 9.52 7.83
Challenge Winner [25] 11.30 - - -

VoxConverse
Baseline (0.5s) 28.94 1.38 3.29 24.27
Baseline (1.0s) 23.99 1.38 3.29 19.32
Baseline (1.5s) 24.81 1.38 3.29 20.12
Cosine Fusion 22.98 1.38 3.29 18.31
GAT 18.62 1.38 3.29 13.94
Baseline (0.5s) + AA 28.76 1.38 3.29 24.08
Baseline (1.0s) + AA 21.64 1.38 3.29 16.96
Baseline (1.5s) + AA 14.88 1.38 3.29 10.21
Cosine Fusion + AA 18.95 1.38 3.29 14.27
GAT + AA 12.78 1.38 3.29 8.1
Challenge Winner [26] 6.23 - - -

channel corruption using FFMPEG, masking frequency bin higher than
4k to simulate narrow-band signal.

Training protocol. In this dataset configuration, positive pairs are scarce.
Thus, without further interference, GAT would tend to ignore positive pairs

and output all inputs as negative. To reduce this tendency, we oversample
positive pairs with an imbalanced dataset sampler 2 and construct a
mini-batch of evenly composed pairs of both types.

Binary cross-entropy loss is used to train the GAT model. The model is
trained for 50 epochs using a mini-batch size of 50. While the GAT model
is being trained, the speaker embedding model is fixed. We train the model
using Adam optimizer [33]. A learning rate of 0.0001 is used as the initial
value, after which it is adjusted through the cosine annealing scheduler [34].

5.3. Baselines

We test two types of baselines: single-scale diarisation systems and multi-
scale diarisation systems. The baseline for a multi-scale diarisation system
is described in Section 2. Cosine Fusion in Table 1 represents this system.
A single-scale diarisation system that has the same structure in a multi-scale
baseline except using only a single-scale segment. Baseline (0.5s), Baseline
(1.0s), and Baseline (1.5s) in Table 1 represent these systems. And we
also test those mentioned systems in combination with AA.

5.4. Results analysis

Table 1 shows the diarisation results in DIHARD I, II, III, and VoxCon-
verse. All configurations are evaluated with and without the proposed
AA technique where top five rows denote performance without AA. A
single-scale system shows better numbers when using a larger time scale
segment. Cosine Fusion slightly underperforms compared to the best
single-scale systems.

The multi-scale pipeline with the GAT module shows significant
performance improvements relative to the baselines. This performance
improvement can be seen on all datasets that we tested. Compared to
the single-scale baseline of the best performance, the speaker confusion
is improved by an average of 19.56%, and compared to the multi-scale
baseline (Cosine Fusion), there is a performance improvement of 21.90%.

The above-mentioned trend can be confirmed even when feature en-
hancement (AA) is used. Compared to the single-scale baseline, an average
improvement of 10.91% is shown and compared to the multi-scale baseline,
there is a performance improvement of 27.04%. Also, the modified feature
enhancement has an effect. There is an average increase of 26.30% (GAT
vs. GAT + AA).

Challenge winner results, depicted in the last row for each dataset, lever-
age numerous ad-hoc modules as well as ensembles, making direct com-
parisons infeasible. Despite these handicaps, our system outperforms the
winning system of DIHARD I and shows competitive results in DIHARD
II. There is a performance gap for DIHARD III and VoxConverse, however,
because our system does not consider overlapped speech and is not a fusion
of multiple different systems, we argue that our system still has potentials.

6. CONCLUSION

We proposed a graph attention network for multi-scale speaker diarisation.
This module enabled the construction of an affinity matrix by using
segments of varying lengths to compute the similarity between the two
segments. For a more robust similarity calculation, we designed scale
indicators that provide scale information for each multi-scale speaker em-
bedding. We also revamped the previous feature enhancement technique to
take advantage of the pre-computed affinity matrix, which was constructed
from multi-scale embeddings. We evaluated our proposed method on
various datasets and demonstrated consistent performance improvement
across a range of datasets.

2https://github.com/ufoym/imbalanced-dataset-sampler
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