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Augmentation Adversarial Training for
Self-Supervised Speaker Representation Learning

Jingu Kang

Abstract—The goal of this work is to train robust speaker
recognition models using self-supervised representation learning.
Recent works on self-supervised speaker representations are based
on contrastive learning in which they encourage within-utterance
embeddings to be similar and across-utterance embeddings to
be dissimilar. However, since the within-utterance segments
share the same acoustic characteristics, it is difficult to separate
the speaker information from the channel information. To this
end, we propose an augmentation adversarial training strategy
that trains the network to be discriminative for the speaker
information, while invariant to the augmentation applied. Since
the augmentation simulates the acoustic characteristics, training
the network to be invariant to augmentation also encourages
the network to be invariant to the channel information in
general. Extensive experiments on the VoxCeleb and VOiCES
datasets show significant improvements over previous works using
self-supervision, and the performance of our self-supervised models
far exceeds that of humans. We also conduct semi-supervised
learning experiments to show that augmentation adversarial
training benefits performance in presence of speaker labels.

Index Terms—Self-supervised learning, speaker recognition.

I. INTRODUCTION

PEAKER recognition is the ability to identify or verify a
S speaker’s identity based on their voice. It has gained pop-
ularity in biometric authentication due to its easy accessibility
and non-invasive nature.

Although there is a large body of recent literature on speaker
recognition using deep neural network models [10], [20], [26],
[46], [49], the overwhelming majority of these are based on
the supervised learning framework. The availability of new
large-scale datasets [12], [29], [32] combined with powerful
neural network models has facilitated fast progress on many
popular tasks within speaker recognition, but there are many
challenges to extending this strategy to every application. For
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instance, the cost of annotating a new dataset can be prohibitively
expensive and handling of sensitive biometric data can lead
to privacy issues. The task of speaker verification is also very
difficult for humans, resulting in inaccurate annotations in the
absence of visual information.

On the other hand, there are many resources that can be used
to learn representations, but have not been used due to the lack of
annotations. For these reasons, unsupervised and self-supervised
learning have recently received a growing amount of attention
in order to leverage the abundant data available.

Existing literature on self-supervised learning of representa-
tions can be divided into two strands: generative or discrimi-
native. Generative approaches learn representations by recon-
structing the input data [22] or predicting withheld parts of the
data, such as inpainting missing part of images [34] and colouris-
ing RGB images from only grey-scale images [50]. However, the
element-wise generation is computationally expensive and is not
necessary for representation learning.

Of relevance to our work is the second strand that learns dis-
criminative representations directly, often using metric learning-
based objectives. In particular, approaches based on contrastive
learning in the latent space have shown to learn effective repre-
sentations by taking within-class inputs from multiple views [4],
[9], [30], [43] or modalities [3], [13], [14], [31], [39] of the same
input data.

These strategies have been applied to speech signals in order
to enable unsupervised learning of speaker representations. [36]
samples two speech segments from same utterance and trains
the network to maximise the mutual information between them.
A key difference between supervised metric learning and the
proposed contrastive learning framework is that segments from
a single utterance have the same noise and reverberation char-
acteristics. This effect has been partially mitigated using data
augmentation in [23], which mimics the strategy of [9] that has
shown promising performance in vision tasks.

A key challenge in speaker recognition is to learn embeddings
that are speaker-discriminative, but invariant to all other spurious
variations. Inspired by the work on domain adaptation using
adversarial training [18], [44], recent works have used this
framework to improve generalisation between languages [6],
[7], [38] and between datasets [6], [48]. In particular, [10]
and [27] have proposed channel-invariant training for speaker
recognition by introducing a confusion loss between the same
speaker segments from across and within an utterance.

While self-supervised experiments show promising results,
the performance can be further improved by utilising small
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amounts of labelled data. We extend the work by fine-tuning the
self-supervised models on small labelled datasets, and demon-
strate the effectiveness of augmentation adversarial training also
on semi-supervised learning. Finally, we compare the perfor-
mance of the speaker verification models to humans, and show
that our models significantly outperform humans.

II. AUGMENTATION ADVERSARIAL TRAINING

This section describes the proposed self-supervised training
strategy. We describe the batch formation for training, then
introduce the contrastive learning framework which samples
two non-overlapping speech segments from each utterance and
applies data augmentation. We then propose Augmentation
Adversarial Training (AAT), which exploits an augmentation
classifier in addition to speaker embedding extractor. Training
is performed in turns to remove channel information from the
speaker representation. We include the pseudo-code of AAT
algorithm in the supplementary materials (Listing ).

A. Batch Formation

Each mini-batch B contains randomly selected N utterances
X1,Xs, ..., Xy out of set. For each utterance x;, we sample
two non-overlapping speech segments, x;; and X; 2, both of
which are time-domain signals. Under the assumption that every
utterance contains only one person’s speech, x; 1 and x; » are
from same identity.

B. Contrastive Training

Since x; 1 and x; o are sampled from the same utterance,
the channel characteristics of the two segments are likely to
be identical. As a result, using the standard metric learning
methods, speaker embedding extractor might learn not only the
speaker characteristics, but also the similarity of the environment
between the two segments. Therefore, data augmentation such
as additive noise or room impulse response (RIR) is applied to
simulate different channel characteristics.

Specifically, for each two non-overlapping segments x; 1 and
x;,2 (1 <4 < N), D-dimensional speaker embeddings e; ; ;. are
computed as follows:

eijk = f(Xij*Rix+Nigx) (4,k) €{(1,1),(2,2)} (D

where R;j, and N, ; are randomly selected from a set of pre-
computed RIR filters and noise dataset, respectively. f(-) is the
speaker embedding extractor and is trained with speaker loss
functions. * is the notation for convolution. Therefore, e; ; 1
refers to the embedding of j-th segment of ¢-th utterance, with
augmentation type k.

Prototypical loss. Prototypical network [40] has been intro-
duced for few-shot learning and has been shown to perform well
in speaker verification [2], [11], [47]. In our case, e; 1 1 iS aquery
and e; 5 o is a prototype of size 1 support set. We compute the
negative of the L2 distance as follows:

S(ei,e;) = —|lei — el 2

In the angular variant of the prototypical loss (AP) [11], the
distance function is replaced by a cosine similarity sim(-,-)
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combined with learnable weight w > 0 and bias b:
S(e;,ej) =w x sim(e;,ej) +b (3)
where cosine similarity between e; and e; is defined as an
inner product of normalised vectors:
_ %€
~ lleillllesll
Cross entropy loss with a log-softmax function is used to

minimise the distance between segments from same utterance
and maximise the distance between different utterances.

sim(e;, e;)

“

N
1 exp(S(ein,1,€i22))
LS k —_ log 9Ly 94y
’ N ; 29[21 exp(S(es1,1,€i.22))

®)

Contrast to supervised metric learning, it is not guaranteed
that all x; are from different speakers. If the batch size N is
small relative to the total number of speakers and well-shuffled,
it can be expected that most of the utterances in a batch are from
different speakers.

C. Augmentation Adversarial Training

Data augmentation methods help the learnt embeddings to
be more robust to channel variance, however do not explicitly
remove the information from the embeddings. Since the aug-
mentation methods simulate different channel environments,
training the embeddings to be invariant to the augmentation
also encourages the embeddings to be channel-invariant. Here,
we propose Augmentation Adversarial Training (AAT) that pe-
nalises the ability to predict the augmentation in order to prevent
the speaker embedding extractor from learning the channel
information. The overview of this training method is in Fig. 1.

In addition to speaker representations e; 1,1 and e; o o, the
third representation is extracted. The third representation e; 2 1
comes from the second segment x; . We apply same RIR filter
R; 1 and additive noise V; 1 as e; 1,1, which is illustrated in left
figure of Fig. 1.

Cijk = f(Xi,j * Ri’k + Ni’k) (]7 k) € {(L 1)7 (27 1>7 (27 2)}
(6)
Then, discriminator training phase and embedding training
phase are performed alternately, as explained below.
Discriminator training. In this step, we train the augmenta-
tion classifier g. The assumption is that e; ; ; and e; 2 1 share
the same channel characteristic, while e; 11 and e; 22 have
different characteristics. We generate two types of input per
each mini-batch, e; 11 4 €; 21 and e; 1,1 4 €; 22, where -
indicates concatenation of vectors. Since e; ; 1, is D-dimensional
vector, both inputs’ dimensions are 2D. The resultant batch size
for training g is 2N, N inputs of e; 1,1 H €; 2,1 and another
N inputs of e; 1,1 4+ €;,2 2. The network is trained to classify
whether two inputs are from the same channel by using binary
cross entropy loss. In this step, the gradient does not flow to
the speaker embedding extractor. The loss function Lg;s can be
formulated as below where o (+) is a sigmoid function.

N
1
Lgis = — N ; (log(o(g(ein,1 He€i2.1)))

+log (1 —o(g(ei, Hei22)))) (7)
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Fig. 1. Overview of the training strategy. The index notation for the inputs and the embeddings are consistent with the equations, i.e. 7, j, k refer to j-th segment

of i-th utterance, with augmentation type k. Best seen in colour.

Embedding training. In this step, we train the speaker em-
bedding extractor f. While training f with e;1,; and e; 22
similar to Section II-B, we also apply Augmentation Adversar-
ial Training loss (AAT loss) to encourage speaker embedding
extractor to learn channel-invariant embedding. The weights of
augmentation classifier g are fixed during this step. Learning
objective related to this strategy is described below.

AAT loss. AAT loss is applied to remove the channel informa-
tion from speaker embeddings. After training the augmentation
classifier to distinguish channel similarities, we apply binary
cross entropy loss which is similar to Lg;s. One difference is, a
gradient reversal layer is placed between embedding extractor
and augmentation classifier, thereby penalising the ability to
correctly predict whether the pair of segments share the same
channel characteristics. It can be formulated as Equation 8 where
minus indicates the use of gradient reversal layer.

Laat = _Ldis (8)

The overall loss is the summation of the speaker loss and
the AAT loss with a weight parameter A. Ly can be either
prototypical or angular prototypical loss function.

Loveran = Lspk + ALt 9

D. Semi-Supervised Training

While there has been an increasing attention on self-
supervised speaker representation, the best results reported using
self-supervised methods fall far short of supervised counter-
parts. Semi-supervised learning methods utilise small amounts
of labelled data to push the performance of self-supervised
models closer to the fully supervised ones. For example in
automatic speech recognition, pre-training using wav2vec 2.0[5]
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has demonstrated very strong performance while using orders
of magnitude less labelled data than in previous works. Here, we
apply semi-supervised learning strategy to speaker recognition.

Supervised fine-tuning. The self-supervised models trained
in Sections II-B and II-C are fine-tuned with full supervision
using a small amount of data. The experiments are initialised
from the best models pre-trained using self-supervision. The
fine-tuning is performed using a combination of softmax and an-
gular prototypical losses, which has shown strong results in [25].
We compare pre-trained models trained with and without aug-
mentation adversarial training to demonstrate its effectiveness.

III. EXPERIMENTS
A. Input Representations

Since the utterances in VoxCeleb are always longer than
4 seconds, two 1.8-second segments are randomly sampled
from each utterance during batch formation to construct two
non-overlapping speech segments x; 1 and x; o introduced in
Section II-A. The duration of the segments is slightly shorter
than half of the shortest utterance in order to allow for small
temporal perturbation. 40-dimensional log-mel spectrogram is
extracted with window length 25 ms and hop length 10 ms.
Instance normalisation [45] is performed as a mean variance
normalisation to the input. We do not use voice activity detection
(VAD) since the dataset mostly consists of continuous speech.

B. Network Architecture

The network architecture of the speaker embedding
extractor closely follows the Fast ResNet-34 [11] and
ECAPA-TDNN [16] architectures. Fast ResNet-34 is a
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lightweight version of the original ResNet-34 with the same
architecture but the channel sizes are reduced to a quarter.
Self-attentive pooling is performed on the output of residual
blocks along the time axis, followed by a fully connected layer.
The dimension of the speaker embedding e is 512.

ECAPA-TDNN is an advanced version of X-vector sys-
tem [42] in the speaker recognition field. This architecture is
composed of time-delay neural blocks (TDNNs) and squeeze
and excitation (SE) layers unified with blocks of Res2Block
layers. In addition, the model contains the layers for propagating
and aggregating hierarchical features in one network. At the
end of the network, the frame-level features are pooled by
channel-dependent frame attention for the fixed dimensional
embedding.

The augmentation classifier consists of a gradient reversal
layer followed by two fully connected layers with hidden size
512. ReLU activation and one-dimensional batch normalisation
layer are placed between these layers. The size of the last fully
connected layer is 1 since the network is a binary classifier.

C. Data Augmentation

Data augmentation plays a crucial role in contrastive learning,
as reported by previous literature in speaker recognition [23]
and other domains [4], [9], [30], [43]. We exploit two popular
augmentation methods in speech processing — additive noise
and RIR simulation. For additive noise, we use the MUSAN
corpus [41]; for room impulse responses, we use 1,000 pre-
computed RIR filters. Both noise and RIR filters are randomly
selected during training. The types of augmentation and the SNR
range for each type are the same as those used by the original
x-vector paper — see Section 3.3 of [42] for details.

In order to verify the effects of the different augmentation
methods, we perform a number of experiments, (1) without any
augmentation, (2) applying only noise addition, (3) applying
eithernoise addition or reverberation and (4) applying both noise
addition and reverberation. We also compare the results of only
augmenting one of the speech segment (i.e. ;11 = f(x;1).
€21 = f(Xiz2),and ;22 = f(x12 * R1 2+ Ny 2)) and aug-
menting both of the speech segments.

D. Training Details

Our implementation is based on the PyTorch framework [33].
The models are trained using a NVIDIA V100 GPU with 32 GB
memory. All experiments are repeated independently three times
in order to minimise the effect of random initialisation. Mean and
standard deviation of the results are reported in Section III-G.

Self-supervised training. We use the Adam optimiser with
aninitial learning rate of 0.001 decreasing by 5% every 5 epochs,
for a total of 150 epochs. 200 utterances are randomly selected
for each mini-batch formation.

Supervised fine-tuning. Our implementation follows the su-
pervised training protocol in [11]. We use the Adam optimiser
with an initial learning rate of 0.001 decreasing by 5% every 10
epochs, for a total of 500 epochs.

The fine-tuning experiments are initialised from the best
performing self-supervised models with ECAPA-TDNN archi-
tecture trained using both noise and RIR augmentation.
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E. Dataset

VoxCeleb. VoxCeleb is an audio-visual dataset consisting of
short clips of human speech, extracted from celebrity interview
videos uploaded to YouTube. The models are trained on the
development set of VoxCeleb2 [12], which consists of over
1 million utterances from 5,994 speakers. Speaker labels in
VoxCeleb2 are not used in our method. For the semi-supervised
learning experiment, we also use the development set of Vox-
Celebl [32] dataset along with its labels, which consists of
148,642 utterances from 1,211 speakers. The original test set of
VoxCelebl [32] containing 40 speakers is used for evaluation.

CN-Celeb. CN-Celeb [17] is a speaker recognition dataset
consisting of speech data of Chinese celebrities, extracted from
Bilibili using an automated pipeline similar to that used to collect
VoxCeleb. The total set contains 130,109 utterances (274 hours)
from 1,000 speakers, of which 800 speakers are designated for
training and 200 for evaluation. The dataset is challenging since
it contains different genres (entertainment, interview, singing,
advertisements, etc.), most of the utterances involve strong real-
world noise and many are short (32% of the utterances are less
than 2 seconds). The dataset has been checked by humans.

VOICES. The Voices Obscured in Complex Environmental
Settings (VOIiCES) [37] corpus contains speech recorded by
far-field microphones in noisy room conditions. Evaluation on
this dataset is performed to provide out-of-domain trial for the
models trained on the VoxCeleb2 dataset. In particular, we use
the evaluation list provided in the development data for the
2019 VOICES challenge, which contains 4 million pairs from
15,904 utterances. Note that the speaker models are not trained
or fine-tuned on this dataset, in order to verify that the models
trained on the VoxCeleb dataset generalises to out-of-domain
data.

F. Baselines

We compare the results of our methods with a range of
baselines in Table I.

Previous works using self-supervision. Self-supervised
methods have been used in speaker verification by a number
of previous works. [31] uses cross-modal self-supervision to
learn the joint representation of face images and speech seg-
ments. [14] extends this work by optimising within-modality
distances as well as across-modality. [23] proposes audio-only
self-supervised learning with data augmentation using additive
noise and RIR filters, which is of closest relevance to our work.
We denote the result of those works in Table I as Disent., CDDL
and GCL, respectively.

I-vectors. I-vectors [15] have been used widely in speaker
recognition before the emergence of deep learning. Although
the i-vectors are often used in conjunction with probabilistic
linear discriminant analysis (PLDA) back-end to improve per-
formance [8], [24], [28], training of i-vectors and scoring with
cosine similarity as proposed by the original paper [15] do not
require any supervision.

60-dimensional frame-level features (19 Mel-frequency cep-
stral coefficients + energy + A + AA) are extracted from
the audio signal using a 25 ms window with 10 ms shifts,
then mean and variance normalisation (MVN) is applied.
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TABLE I

SPEAKER VERIFICATION PERFORMANCE ON THE VOXCELEB1 TEST SET

Model ResNet34 ECAPA-TDNN
Objective Aug. EER (%) MinDCF EER (%) MinDCF
Self-supervised baselines §
Disent. [11] - 22.09 - - -
CDDL [14] - 17.52 - - -
GCL [77] Noise or RIR 15.26 - - -
I-vector T - 15.28 0.627 - -
Human benchmark §

AMT - 26.51 - - -
Expert - 15.77 - - -
No augmentation
P - 27.30+0.15  0.788 +0.002 - -
AP - 2537+0.15  0.788 +0.004 - -
Augment one segment
P Noise 20.58+0.30  0.738+0.003 | 15.13+0.00  0.650 +0.003
P + AAT Noise 17.08 +£0.55 0.685+0.016 | 14.62+0.21  0.627 +0.005
P Noise or RIR 1822+042 0.719+0.003 | 11.77+0.37  0.585+0.013
P + AAT Noise or RIR 12.77+0.60  0.634+0.016 | 10.56+0.16  0.546 +0.002
P Noise and RIR | 13.03+0.05  0.610 £ 0.005 9.13+0.03  0.487 +0.005
P + AAT Noise and RIR 9.96+0.33 0.522+0.019 8.71+0.22  0.458 +0.005
AP Noise 18.63+0.37 0.731+0.004 | 13.03+0.06 0.615+0.001
AP + AAT  Noise 1447 +0.06 0.666+0.004 | 12.85+0.04 0.597 +0.004
AP Noise or RIR 1643 +0.25 0.710+0.006 | 10.44+0.03  0.560 +0.007
AP + AAT  Noise or RIR 11.35+0.18  0.612 +0.008 8.39+0.08 0.471 +0.004
AP Noise and RIR | 11.43+0.20 0.592+0.013 8.08+0.04 0.452+0.014
AP + AAT  Noise and RIR 8.86+0.18  0.490 + 0.009 7.35+0.12  0.387 +0.002
Augment both segments
P Noise 16.00+0.05 0.667+0.002 | 15.16+0.07  0.637 +0.000
P + AAT Noise 1522+024 0.640+0.004 | 14.85+0.27  0.634 +0.005
P Noise or RIR 1242 +0.15  0.623+0.006 | 11.46+0.18 0.573 +0.004
P + AAT Noise or RIR 10.54+0.06  0.544+0.002 | 10.23+0.14  0.526 +0.002
p Noise and RIR | 10.16 £0.16  0.524 +0.009 9.14+0.16  0.477 +0.005
P + AAT Noise and RIR 9.36+0.07 0.482 +0.004 8.40+0.23  0.447 +0.007
AP Noise 1473 +£0.19  0.665+0.006 | 13.08+0.05 0.618 +0.003
AP + AAT  Noise 13.56 +0.18  0.632+0.008 | 12.80+0.19  0.597 +0.005
AP Noise or RIR 11.60 £0.14  0.620+0.004 | 10.51+0.16  0.559 +0.006
AP + AAT  Noise or RIR 9.03+0.07 0.512+0.011 8.27+0.22  0.454 +0.007
AP Noise and RIR 9.56+0.18 0.511+0.011 8.03+0.13  0.449 +0.010
AP + AAT  Noise and RIR 8.65+0.14  0.469 + 0.008 7.19+0.06  0.386 + 0.004

+ Uses the I-vector together with cosine similarity. § computed on a subset of 2,000 pairs. § is unrelated
to network architecture. P: prototypical loss, AP: angular prototypical loss, AAT: augmentation adversarial

training.
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A gender-independent universal background model, contain-
ing 2,048 Gaussian components, and a total variability ma-
trix with dimensionality 400 are trained, both with 10 itera-
tions. Our implementation is based on the popular Kaldi [35]
toolkit.

G. Human Benchmark

Humans do not learn how to recognise the speaker identity
through supervised training as computers do. Therefore, it is
interesting to compare the human performance on speaker verifi-
cation as a self-supervised counterpart of our model. We conduct
experiments with two groups of annotators — crowdworkers on
Amazon Mechanical Turk (AMT) and experts who have dealt
with speaker recognition for several years (Experts).

They are asked to annotate random subsets of the VoxCeleb
test set. The evaluation protocols for these experiments mimic
the VoxCeleb evaluation for automatic speaker recognition — the
annotators are given utterance pairs, and they are asked whether
they believe that the two utterances are spoken by the same
speaker.

The annotators are given a pair of utterances to listen to, and
are asked to choose between one of the following options. The
annotators are discouraged from using the score of 3 (border-
line). They are given up to 30 seconds for the task.

1 - Definitely different,

2 - Probably different,

3 - Borderline,

4 - Probably the same,

5 - Definitely the same.
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represents the self-supervised ResNet model.

AMT. Amazon Mechanical Turk is a crowdsourcing market-
place to hire remotely located crowdworkers to perform discrete
microtasks such as data annotation or surveys.

2,000 randomly sampled pairs from the VoxCeleb test set are
given to the annotators through this platform, who are rewarded
on a per-sample basis. The tasks are only made available to the
most experienced and highly rated workers, however the anno-
tators do not necessarily have previous experience in speaker
recognition.

The annotators are told that approximately half of the pairs
are from the speaker, and are given some example pairs to listen
to before working on the task.

Experts. The samples are also annotated by the authors of
this paper, who have several years of experience in speaker
recognition. The authors are very familiar with the VoxCeleb
dataset, including the statistics of the test set.

The same 2,000 pairs used by the Mechanical Turk are divided
into 4 subsets of 500, each of which is annotated by a different
author. These subsets are referred to as Sets A, B, C and D in
Table VII.

IV. RESULTS

Evaluation protocol. We report two performance metrics:
(i) the Equal Error Rate (EER) which is the rate at which
both acceptance and rejection errors are equal; and (ii) the
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minimum detection cost of the function (MinDCF) used by
the NIST SRE [1] and the VoxSRC' evaluations. For com-
puting EER, we sample 10 segments for each utterance and
compute the mean of 10 x 10 = 100 distances from all pos-
sible combinations per trial pair in the evaluation set. This
protocol is in line with that used by [10], [11]. The parameters
Criss =1, Ctq =1 and Pyyrger = 0.05 are used for the min-
imum detection cost function. Please refer to [1] for the exact
equation.

A. Self-Supervised Training

Performance improvement with AAT. Table I and Table II
report the experimental results in VoxCelebl and VOIiCES test
sets, respectively. Data augmentation is a key to the performance
of self-supervised speaker models. More aggressive augmenta-
tion schemes (e.g. noise and RIR) improve the performance of
the models. This implies that data augmentation helps to train the
noise-robust network and is essential to apply diverse channel
effects.

In Table I, AAT reduces the verification errors across a
range of augmentation settings, objective functions, and net-
work architectures. The best performing model trained with
angular prototypical loss and AAT achieves an equal error rate

![Online]. Available: http:/www.robots.ox.ac.uk/~vgg/data/voxceleb/comp
etition2020.html
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TABLE II
SPEAKER VERIFICATION PERFORMANCE ON THE VOICES TEST SET. SYMBOLS AND ACRONYMS ARE THE SAME AS THAT IN TABLE I

Model ResNet34 ECAPA-TDNN
Objective Aug. EER (%) MinDCF EER (%) MinDCF
Self-supervised baselines §
I-vector 1 - | 17.49 0.817 | - -
No augmentation
P - 29.69 +£1.45  0.992 +0.004 - -
AP - 3221 +0.89  0.994 +0.002 - -
Augment one segment
P Noise 22.04+0.53  0.944+0.002 | 16.90+0.06 0.883 +0.007
P + AAT Noise 1898 +0.33 0913+0.012 | 1742+1.22  0.881 +0.008
P Noise or RIR 17.27 £0.39  0.894 + 0.006 8.92+0.29 0.596 +0.003
P + AAT Noise or RIR 1296 +0.43  0.760 +0.011 7.74+0.34  0.507 +0.023
P Noise and RIR | 11.94+0.01 0.713 +£0.012 5.11+0.04  0.358 +0.005
P + AAT Noise and RIR 9.05+0.96 0.583 +0.057 4.22+0.18  0.307 +0.006
AP Noise 21.99 £0.68  0.939 +0.008 | 15.63+0.33  0.830+0.005
AP + AAT  Noise 20.64 £1.25 0.908 £0.007 | 16.93+0.45 0.872+0.027
AP Noise or RIR 1590+0.46 0.850+0.017 8.78+0.22  0.572 +0.006
AP + AAT  Noise or RIR 12.25+048  0.753 +0.022 6.32+0.09 0.457 +0.008
AP Noise and RIR | 10.52+0.58  0.662 +0.034 446+021 0.316+0.022
AP + AAT  Noise and RIR 7.95+0.12 0.528+0.010 325+0.05 0.241 +0.007
Augment both segments
P Noise 19.15+1.71  0.877+0.017 | 16.65+1.57 0.858 +0.022
P + AAT Noise 1731 +1.73  0.863+0.011 | 18.81 +1.34  0.904 +0.020
P Noise or RIR 1131 £0.75  0.684 +0.033 9.14+0.38  0.597 +£0.029
P + AAT Noise or RIR 9.17+0.23  0.594 +0.007 7.88+049  0.522+0.018
P Noise and RIR 5.82+0.11 0.407 +0.003 4.62+0.06 0.329 +0.008
P + AAT Noise and RIR 526+0.03 0.378 +0.009 4.11+0.13  0.298 +0.007
AP Noise 18.82+1.13  0.895+0.012 | 15.80+1.26 0.833 +0.022
AP + AAT Noise 18.75+1.61 0.886+0.022 | 15.61+0.56 0.849 +0.023
AP Noise or RIR 1093 +£0.28  0.687 +£0.015 7.65+0.08  0.535+0.005
AP + AAT  Noise or RIR 9.06+0.58 0.608 +0.013 6.52+0.44  0.480+0.027
AP Noise and RIR 5.65+042 0401 +0.024 431+0.13  0.305 +0.008
AP + AAT  Noise and RIR 4.96+0.12  0.356 +0.007 347+0.11 0.246+0.013
TABLE III

THE EFFECT OF THE VALUE OF A ON SPEAKER VERIFICATION PERFORMANCE, USING ADDITIVE NOISE AND ROOM REVERBERATION. RESULTS ON THE
VOXCELEBI1 TEST SET, USING A RESNET34 MODEL TRAINED ON VOXCELEB2

Test dataset VoxCelebl VOIiCES
Objective A EER (%) MinDCF | EER (%) MinDCF
Augment both segments
Angular Prototypical 0] 956 +0.18 0511 +£0.011 | 565+ 042 0.401 + 0.024
Angular Prototypical + AAT 1] 889 +0.09 0476 +0.006 | 5.32 + 0.19 0.361 + 0.014
Angular Prototypical + AAT 3 | 8.65 + 0.14 0.469 = 0.008 | 5.05 = 0.10  0.367 + 0.012
Angular Prototypical + AAT 10 | 8.72 + 0.12  0.454 + 0.013 | 4.96 + 0.12 0.356 + 0.007

of 7.19%, outperforming all comparable works by a significant
margin.

A similar trend is observed in VOICES dataset results
(Table IT), on which the models trained with AAT outperform the
counterparts without. This demonstrates that the models trained
using AAT generalise well to unseen domains, as well as the
dataset that the models have been trained on.

The effect of 1. Speaker recognition performance for various
values of the AAT loss weight A is reported in Table III. The aug-
mentation process and the learning objective are fixed in these
experiments. Applying the AAT improves the performance in
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both datasets. A = 3 shows the best performance for VoxCeleb,
and A = 10 for VOICES.

B. Semi-Supervised Training

Table IV reports the results of the fine-tuned models on the
VoxCelebl test set. The semi-supervised models outperform
the self-supervised counterparts by a large margin, and also
show strong performance compared to the model trained us-
ing full supervision on VoxCelebl alone. Models trained with
AAT consistently outperform the models without for various
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TABLE IV
RESULTS ON THE VOXCELEB1 AND VOICES TEST SETS, USING A ECAPA-TDNN MODEL PRE-TRAINED ON VOXCELEB2 WITH SELF-SUPERVISION AND
FINE-TUNED ON VARIOUS SUBSETS OF VOXCELEB1 WITH SPEAKER LABELS

Test dataset VoxCelebl VOIiCES
Pre-training objective EER (%) MinDCF \ EER (%) MinDCF
Fine-tuned using all sessions from 1,211 speakers (148,642 utterances)
No pretraining 238 £ 0.08 0.175 £ 0.003 | 3.24 + 0.30  0.260 = 0.014
Angular Prototypical 1.85 £ 0.02 0.137 £ 0.001 | 2.52 + 0.05 0.202 + 0.004
Angular Prototypical + AAT | 1.64 + 0.03 0.135 + 0.006 | 2.48 + 0.04  0.187 + 0.005

Fine-tuned using all session from 500 speakers (60,559 utterances)

No pretraining
Angular Prototypical
Angular Prototypical + AAT

2.72 + 0.02

5.19 + 0.04  0.347 + 0.007
0.200 + 0.004
2.60 + 0.04 0.187 + 0.003

5.13 +£ 045 04164 + 0.026
2.68 + 0.06 0.1868 + 0.001
2.55 + 0.10  0.1840 + 0.004

Fine-tuned using up to 4 sessions from 500 speakers (13,411 utterances)

No pretraining 8.73 + 0.02
Angular Prototypical

Angular Prototypical + AAT

0.542 + 0.005
3.76 + 0.02  0.283 + 0.001
3.62 + 0.02 0.286 + 0.006

8.21 + 033  0.6493 + 0.027
3.85 +0.03 0.3031 + 0.007
3.38 +£ 0.19  0.2725 + 0.006

TABLE V
RESULTS ON THE CN-CELEB TEST SET, USING A ECAPA-TDNN MODEL
PRE-TRAINED ON VOXCELEB2 WITH SELF-SUPERVISION

CN-Celeb1
EER (%)

No supervised fine-tuning

Test dataset

Pre-training objective MinDCF

Angular Prototypical + AAT | 14.54 £ 0.08  0.658 + 0.005
Fine-tuned on VoxCelebl

Angular Prototypical + AAT | 13.46 + 0.35  0.574 + 0.009
Fine-tuned on CN-Celebl

No pretraining 11.01 + 0.17  0.510 + 0.004

Angular Prototypical 8.87 £ 0.18 0.423 + 0.002

Angular Prototypical + AAT | 8.71 + 0.04 0.422 + 0.002

amounts of fine-tuning data. This verifies that pre-trained mod-
els with AAT provide stronger initialisation in the fine-tuning
scenario.

Table V reports the results when the pre-trained models are
fine-tuned with data from different domains. Here, the model
is trained on VoxCeleb2, but fine-tuned on the development set
of Chinese celebrities dataset CN-Celebl and evaluated on the
test set of CN-Celeb1. Even in this scenario, the self-supervised
pre-training on the non-target domain dataset helps to improve
performance.

The effect of layer freezing. The popular wav2vec 2.0 [5]
training strategy freezes the first convolutional blocks during
fine-tuning. In other tasks, models fine-tuned with fixed lay-
ers perform slightly worse compared to models that are fully
fine-tuned [9], [19], [21]. We conduct experiments that freeze
different layers to find the best strategy in speaker verification.
The self-supervised model with AAT is used to initialise the
training, and the results are compared using VoxCelebl and
CN-Celebl.

We compare four fine-tuned models, a model without any
frozen layers (i.e. fine-tuning all layers), a model with freezing
the first convolutional layer of ECAPA-TDNN, a model with
freezing from the first input layer to the first convolutional block,

and a model with freezing from the input layer to the second
convolutional block. In most cases, fine-tuning all layers without
freezing performs better, as shown in Table VI.

C. Human Experiments

Metrics. For the human benchmark, we use two additional
metrics — Area Under Receiver Operating Characteristic curve
(AUROC), and binary classification accuracy — in addition to
the Equal Error Rates (EER). EER and AUROC are obtained by
interpolating the ROC curve between the points for the 5 discrete
scores. Binary classification accuracy is the most intuitive and
fair metric for humans, since binary decision from each pair
is exactly the same task that they have been asked to perform.
The score of 3 (borderline) is assigned to the positive class for
both AMT and experts, since this gives a better accuracy. In
reality, the annotators only used the borderline option very few
times. To compute the binary classification accuracy of our self-
supervised ResNet model (ResNet), we set the threshold tuned
on the validation set that does not overlap with the test set in the
table.

Discussion. Table VII shows the speaker verification per-
formance of the human annotators. We also report four ROC
curves based on the annotation done by the experts in the
supplementary materials (Fig. 2). It can be seen that the an-
notations of the experts are far more accurate compared to the
crowdworkers on AMT. It is also notable that the variance be-
tween the performance of the four expert annotators is relatively
small.

We observe that our ResNet model outperforms the hu-
man benchmark. It is difficult for humans to match the
performance of the deep learning models on the pairwise
verification task. In particular, human annotators have diffi-
culty in matching voices recorded in different environments.
However, humans can sometimes use wider context in con-
versations or auxiliary information such as speaker’s faces,
which would improve the human performance in real-world
scenarios.
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TABLE VI
IMPACT OF FREEZING LAYERS DURING FINE-TUNING. RESULTS ON VOXCELEB1 AND CN-CELEB1 TEST SETS, FINE-TUNED USING THE RESPECTIVE DATASETS
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Test dataset VoxCeleb1 CN-Celeb1
Frozen layer EER (%) MinDCF ‘ EER (%) MinDCF
No freezing (re-train all layers) | 1.64 + 0.003 0.135 + 0.006 | 8.71 + 0.04 0.422 + 0.002
Freeze the first layer 1.64 + 0.015 0.140 +£ 0.002 | 8.74 + 0.05 0.414 + 0.003
+ the first convolution block 1.80 £ 0.037 0.149 + 0.006 | 8.75 + 0.04 0.423 + 0.002
+ the second convolution block | 1.84 + 0.010 0.150 + 0.004 | 8.74 + 0.04 0.426 + 0.002
TABLE VII

SPEAKER VERIFICATION PERFORMANCE OF DIFFERENT METHODS ON SUBSETS OF THE VOXCELEB1 TEST SET. SS-RESNET: OUR SELF-SUPERVISED RESNET
MODEL TRAINED USING THE AP + AAT LoSS

Metric Verification EER (%) AUROC (%) Binary Classification Acc. (%)

Test Set # Pairs | AMT Experts SS-ResNet | AMT Experts SS-ResNet | AMT Experts SS-ResNet
Set A 500 2575 16.53 8.10 79.46  89.28 97.08 73.80  82.20 91.40
Set B 500 25.63  15.70 8.75 82.33  90.96 97.73 74.40  86.00 92.00
Set C 500 22.59 17.78 9.01 81.45 88.61 97.14 7540  82.20 90.40
Set D 500 2591 1398 8.76 78.34  89.78 97.30 72.60  86.40 91.40
All 2000 | 2651 15.77 850 | 7960 89.65  97.32 | 7410 84.20 91.30
V. CONCLUSION ACKNOWLEDGMENT

In this paper, we proposed an augmentation adversarial
training strategy to train effective speaker embeddings
with self-supervision. The method exploits an augmentation
classifier and gradient reversal layer to prevent the speaker
embedding extractor from learning the channel information. The
experiments on the VoxCeleb, CN-Celeb and VOiCES datasets
demonstrate state-of-the-art performance in self-supervised and

semi-supervised speaker recognition.

APPENDIX

Listing 1: PyTorch-style pseudocode of AAT

is

## Let batch (N,3,T) dimensional tensor. N is batch_size
, T is length of utterance, and D is size of embedding.

## batch[i, 0] and batch[i, 1] : different segments with
same augmentation

3 ## batch[i, 1] and batch[i,
different augmentation

## netspk is speaker embedding extractor and netaug is
augmentation classifier.

2] same segment with

-

optim.Adam (netspk.parameters ()
optim.Adam(netaug.parameters ()

spk_optimizer =
 aug_optimizer =

)
)

for batch in loader:

10 feat = netspk.forward(batch) # feat size : (N,3,D)

11

12 # Discriminator Training

13 aug_optimizer.zero_grad()

14 out_a, out_s, out_p = feat[:,0,:].detach(), feat
[:,1,:].detach(), feat[:,2,:].detach()

15 conf_input = torch.cat ((torch.cat ((out_a,out_s),dim=1),
torch.cat ((out_a, out_p),dim=1)),dim=0)

16 conf_output = netaug.forward(conf_input)

17 conf_labels = torch.LongTensor([1] = N + [0] = N)

19 aug_loss = torch.nn.BCELoss (conf_output, conf_ labels)
aug_loss.backward()
21 aug_optimizer.step ()

# Embedding training

24 spk_optimizer.zero_grad()

25 conf_input = torch.cat ((torch.cat ((feat[:,0,:], feat
[:,1,:]),dim=1) ,torch.cat ((feat[:,0,:]1,feat[:,2,:]),dim
=1)),dim=0)

conf_input = RevGrad (conf_input) # reversing gradients

conf_output = netaug.forward(conf_input)

aat_loss = torch.nn.BCELoss (conf_output, conf_labels)

29 spk_loss = SpkCriterion(feat[:, [0,2], :]) #
prototypical or angular prototypical loss

30 loss = spk_loss + lambda * aat_loss

31 loss.backward ()

32 spk_optimizer.step ()
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