
METRIC LEARNING FOR USER-DEFINED KEYWORD SPOTTING

Jaemin Jung1*, Youkyum Kim1*, Jihwan Park2,3, Youshin Lim2,3, Byeong-Yeol Kim2,3,
Youngjoon Jang1, Joon Son Chung1

1Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
2Hyundai Motor Company, 342dot Inc., Seoul, Republic of Korea

ABSTRACT

The goal of this work is to detect new spoken terms defined by users. While
most previous works address Keyword Spotting (KWS) as a closed-set clas-
sification problem, this limits their transferability to unseen terms. The abil-
ity to define custom keywords has advantages in terms of user experience.

In this paper, we propose a metric learning-based training strategy
for user-defined keyword spotting. In particular, we make the following
contributions: (1) we construct a large-scale keyword dataset with an
existing speech corpus and propose a filtering method to remove data that
degrade model training; (2) we propose a metric learning-based two-stage
training strategy, and demonstrate that the proposed method improves the
performance on the user-defined keyword spotting task by enriching their
representations; (3) to facilitate the fair comparison in the user-defined
KWS field, we propose unified evaluation protocol and metrics.

Our proposed system does not require an incremental training on the
user-defined keywords, and outperforms previous works by a significant
margin on the Google Speech Commands dataset using the proposed as
well as the existing metrics.

Index Terms— User-defined keyword spotting, Metric learning

https://mm.kaist.ac.kr/projects/kws

1. INTRODUCTION

As an entry point to many speech-enabled systems, the performance of
KWS systems is critical to providing a satisfactory user experience. While
most existing KWS systems are based on a set of pre-defined keywords,
the ability to define custom keywords can significantly improve user
experience. For instance, the use of different keywords on different devices
prevents accidental wake of nearby devices, and it also provides a layer
of security by preventing access from strangers.

Most recent KWS methods [1, 2, 3, 4, 5] are based on classification
networks that distinguish between target keywords and non-target noises.
On the other hand, keyword spotting is closer to a detection task than a clas-
sification task, where the keywords are spotted from a range of unknown
sounds. Therefore, user-defined keyword spotting can be naturally formu-
lated as a metric learning problem, similar to face and speaker verification.
To this end, we propose a metric learning-based training strategy to learn
effective representations that can be used in query-by-keyword systems.

In many metric learning applications such as face [6, 7, 8] and speaker
recognition [9, 10, 11], it has been demonstrated that the number of training
classes strongly correlates with performance on the downstream task.
However, the popular Google Speech Commands (GSC) dataset [12] only
contains 35 classes, which is insufficient to facilitate good generalisation.
To generate additional training data, previous works [13, 14, 15] extract
keywords from Automatic Speech Recognition (ASR) datasets with a
forced aligner [16] and then use them as training data. However, this
approach does not guarantee the quality of the extracted keyword data. To

* These authors contributed equally.

mitigate this issue, we propose a new filtering method based on Character
Error Rate (CER) to verify whether or not the extracted keywords are
properly segmented using a pre-trained speech recognition model.

We conduct a wide variety of experiments using a range of objective
functions borrowed from recent few-shot learning literature. Moreover, we
propose a two-stage training strategy where we first pre-train the model
on a large-scale out-of-domain corpus, then fine-tune the model on smaller
in-domain data. We perform extensive ablations on the amount of training
data, the two-stage training strategy, and various parameters to find their
effects on KWS performance.

Finally, we list a number of metrics that are suitable for the user-defined
keyword spotting as a detection task. While most existing works use the
classification accuracy to evaluate their systems, the metrics of interest
to the developers of KWS applications are the False Alarm Rates (FAR)
and False Rejection Rates (FRR) at given operating points, represented
on a Detection Error Tradeoff (DET) curve. Moreover, there is no standard
evaluation protocol in the field that enables fair comparisons with different
works. To this end, we propose an evaluation protocol that is relevant to
the detection task. We evaluate the performance of the proposed methods
on GSC dataset, using the existing metrics. Our model outperforms
comparable works by a significant margin.

1.1. Related Works

In recent years, with the advances in deep learning technology, deep neural
networks have been applied to the keyword spotting research. [17] utilises
Convolutional Neural Network (CNN) to KWS, and [18] explores depth-
wise separable convolution and point-wise convolution for the KWS task.

With the intimate involvement of technology into our daily lives, person-
alized services and privacy have become more important. As a result, there
has been growing attention on user-defined keyword spotting technology.
The user-defined KWS task can be viewed from two perspectives – as a
classification task or a detection task.

[13, 14, 19] solve user-defined keyword spotting task as a classifi-
cation task. [19] classifies non-target keywords into multiple classes in
pre-training, and re-trains the model on the target keywords with data
augmentation. [13] replaces the last linear layer with a randomly initialized
linear layer during fine-tuning. [14] reinforces the model’s representation
capability by pre-training their model on the multilingual keyword dataset.

Some works [15, 20] approach the problem of KWS as a detection
task. [15] designs a model architecture with multi-head attention layers
and introduces soft-triple loss, which is a combination of triplet loss and
softmax loss for learning feature representations. [20] proposes metric
learning-based prototypical network that can effectively extract distinctive
features to detect user-defined keywords. The method still requires an
additional incremental training process to adapt the model to the target
user-defined keywords. In contrast, our method does not require any
incremental training during enrollment.



Feature 
Extraction 
to MFCC

Keyword
Dataset

𝑠! 𝑞!
𝑠" 𝑞"
𝑠# 𝑞#

𝑠$ 𝑞$

Query setSupport set

Fig. 1: Batch configuration for metric learning-based training. si and
qi stand for samples from i-th keyword class in the support set and the
query set, respectively. N denotes size of a mini-batch. Solid lines connect
positive pairs, while dotted lines represent negative pairs.

While there have been significant advances in keyword spotting algo-
rithms, the field still suffers from the lack of diverse training data. To
overcome this shortage problem, few recent studies try to extract keyword
data from a large-scale speech corpus using forced aligners [16]. For
example, [13, 15] and [14] extract keyword data from the LibriSpeech
dataset [21] and the Common Voice dataset [22] respectively. [13, 14, 15]
all use force-align transcripts to construct KWS datasets without verifying
the aligned results. They also divide the datasets into training and test splits
without considering the duplication of keywords between the sets.

In contrast, to validate the aligned keyword data, we evaluate CER
on each of the keyword instances with a pre-trained speech recognition
model and decide whether to include each data into the final training
set. Moreover, we ensure that the keywords used in the pre-training or
fine-tuning do not appear in the user-defined test data. Therefore, our
experimental setup better addresses the user-defined keyword spotting
problem in comparison to the previous literature.

2. METHODOLOGY

2.1. Large-scale Keyword Dataset

We construct a new large-scale keyword dataset, named LibriSpeech Key-
words (LSK), consisting of 1,000 keyword classes extracted from the
LibriSpeech corpus [21]. We utilise a pre-trained wav2vec 2.0 model [23]
to force-align individual words from utterance-level labels. The wav2vec
2.0 model is pre-trained on 960 hours of unlabeled audio from LibriSpeech
dataset and fine-tuned on the same audio with the corresponding transcript.
The extracted keywords are truncated by 1 second to include noises or utter-
ances that may occur before or after the keyword in a real-world scenario.

Unlike previous works [14, 15] which simply use the outputs of the
forced aligner as their training dataset, we also validate the quality of the
collected data. First, we compute CER score on each keyword in our dataset
with the pre-trained wav2vec 2.0 model to filter misaligned examples which
should not be used during the training step. Second, the 13 most frequent
words and one-letter words are removed, because they consist mostly of
articles and prepositions which are hard to recognise. Finally, 10 keywords
in GSC dataset that are used as the user-defined keywords are removed.
From this filtering process, we select the 1,000 most frequent keywords
as our training data, followed by randomly sampling 1,000 instances per
keyword. Note that our LSK dataset is only used in the pre-training stage.

2.2. Training Strategy

Our training strategy is divided into pre-training and fine-tuning stages.
In the pre-training stage, our model is trained on the proposed LSK
dataset containing out-of-domain data to represent spoken words in the
discriminative embedding space. In the fine-tuning stage, our model is
fine-tuned using only 25 keywords of the in-domain GSC dataset. During

inference, we consider the remaining 10 keywords of GSC dataset to be
user-defined keywords, simulating the real-world deployment scenario.
Note that the GSC and LSK datasets exhibit different characteristics in
terms of acoustics and word isolation, hence the need for fine-tuning.

2.3. Objective Functions

In this paper, we compare the baseline softmax loss and two metric
learning-based objective functions. N denotes the number of utterances
per mini-batch.

Softmax. Softmax loss consists of a softmax function followed by a
multi-class cross-entropy loss. It is formulated as:

LS=−
1

N

N∑
i=1

log
e
WT

yi
xi+byi∑C

j=1e
WT

j xi+bj
, (1)

where W and b are learnable parameters, xi is the feature vector, yi is the
class label for corresponding xi. Here, C is the number of keyword classes.
The loss function does not explicitly enforce intra-class compactness and
inter-class separation. We use the softmax loss as the baseline objective
function.

AM-Softmax. Additive Margin Softmax (AM-Softmax) loss [24, 25] intro-
duces a margin to the original Softmax Loss. First, the weights and the input
vectors are normalised in the softmax loss such that the posterior probability
only relies on cosine of the angle between the weights and the input vectors:

LN=−
1

N

N∑
i=1

log
ecos(θyi,i)∑
je

cos(θj,i)
, (2)

where cos(θj,i) is a dot product of normalised vector Wj and xi.
These embeddings are still not sufficiently discriminative because

the equation only penalises the classification error. Cosine margin m is
incorporated into the equation to mitigate this issue:

LC=−
1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m)+
∑

j≠yi
es(cos(θj,i))

, (3)

where s is a fixed scale factor to prevent gradient from getting too small
in training phase.

Angular Prototypical. The objective of prototypical loss [26] is to learn
effective representations by explicitly optimising the distance between the
query and the prototype (support set). In particular, we use the Angular
Prototypical (AP) loss [27], which replaces the Squared Euclidean distance
metric in the regular prototypical loss function with the cosine distance.
For each keyword in a mini-batch, we consider one utterance out of M
utterances as the query set, and the others as the support set. We will
assume that the query is M-th utterance from every keyword for simplicity.
Then the prototype (or centroid) for class k is:

ck=
1

M−1

M−1∑
i=1

ek,i, (4)

where ek,i denotes an embedding feature. We use a cosine-based sim-
ilarity metric with learnable scale w and bias b, as in the GE2E loss [28].

Sj,k=w·cos(ej,M ,ck)+b (5)

During training, each query example is classified against B classes in the
mini-batch based on the softmax over distances to each keyword prototype:

LAP=−
1

B

B∑
j=1

log
eSj,j∑B
k=1e

Sj,k
. (6)



2.4. Batch Configuration

In each mini-batch, only one pair is positive and the rest are all considered
negative pairs. As shown in Fig. 1, a positive pair consists of the same
keyword but different audio data, whereas all the negative pairs consist of
different keywords. For the prototypical-based networks, at least 2 samples
per class per mini-batch are required.

3. EXPERIMENTS

3.1. Datasets

Google Speech Commands (GSC). To simulate a real-world deployment
scenario, we select GSC dataset, which contains 35 different keywords,
as our target domain keyword set. As shown in Table 1, we divide the GSC
dataset into pre-defined, unknown, and user-defined splits. Note that only
the pre-defined and unknown classes are used during the fine-tuning stage
and we consider all classes in unknown split as one class.

Datasets # Classes Keywords

Pre-defined 10
‘Yes’, ‘No’, ‘Up’,

‘Down’, ‘Left’, ‘Right’, ‘On’,
‘Off’, ‘Stop’, ‘Go’

Unknown 15

‘Bed’, ‘Bird’, ‘Cat’,
‘Dog’, ‘Wow’, ‘House’,
‘Learn’, ‘Sheila’, ‘Tree’,

‘Happy’, ‘Marvin’,
‘Backward’, ‘Follow’,

‘Forward’, ‘Visual’

User-defined 10
‘Zero’, ‘One’, ‘Two’,‘Three’,
‘Four’,‘Five’,‘Six’,‘Seven’,

‘Eight’, ‘Nine’

Table 1: Google Speech Commands dataset splits for user-defined keyword
spotting.

LibriSpeech. LibriSpeech [21] dataset is a widely used speech corpus
which contains 1,000-hour spoken sentences along with the corresponding
transcripts. We construct our LibriSpeech Keywords (LSK) dataset using
all of the training data in LibriSpeech.

Korean Speech Commands. Korean Speech Commands [29] contains a
4,000-hour Korean speech set. We construct our Korean Speech Keywords
(KSK) dataset following the same pipeline used for the LSK dataset.

3.2. Evaluation Protocol

We reserve a specific number of samples from each target keyword for
enrollment. We use the centroid of the embedding features extracted from
the model as the prototype for each class. The model maps the input query
signal to the embedding space and makes predictions based on the distance
from the embedded features to the prototypes. We conduct experiments
with 1, 5, and 10 samples for enrollment, referred to as 1-shot, 5-shot, and
10-shot enrollment, respectively.

The following metrics are employed to evaluate the performance of our
system:

Equal Error Rate (EER). For a particular threshold value, two types of
error rates are computed to evaluate how accurately the KWS model detects
user-defined keywords: FRR indicates the proportion where the target
keyword is not detected by the model, and FAR indicates the proportion
where non-target keyword is detected as a target keyword. The trade-off
between FRR and FAR can be visualised on a DET curve by changing
the threshold (See our project page). The Equal Error Rate (EER) is
determined where FAR and FRR are equal.

False Rejection Rate (FRR) at given False Alarm Rate (FAR). These
metrics represent different operating points on the DET curve described
above. In the industry, system designers are often interested in the detection

rate for a fixed number of false alarms per hour (e.g. 70% detection rate
at 5 false alarms). FRR at given FAR is measured to best simulate this
requirement in the experiments.

F1-score. The F1-score combines the precision and recall of a classifier
into a single metric by taking their harmonic mean. It is typically used to
evaluate binary classification systems.

Accuracy. Accuracy represents the ratio of the number of correct predic-
tions to the number of tests in total in a simple 10-way classification setup.

3.3. Implementation Details

Data preprocessing. We extract a 40 dimensional Mel-Frequency Cep-
strum Coefficient (MFCC) with a 30ms window and 10ms frame shift. To
augment the training data, we add diverse noises to the input data using the
MUSAN dataset [30] and apply various Room Impulse Response (RIR)
filters. The length of audio data is set to 1 second using truncation or zero
padding operation.

Training Details. We select the res15 architecture proposed in [31]
as our baseline network. The network is optimised by the Adam opti-
mizer [32]. For pre-training, the batch size is set to 256 and the initial
learning rate is 10−3. For fine-tuning, the batch size is set to 16 and the
learning rate is initialised to 10−5. During both pre-training and fine-tuning,
we use a learning rate decay of 0.95 every epoch. Our framework is
implemented with PyTorch [33].

4. RESULTS

In this section, we analyse the effects of various objective functions, pre-
training methods, and data pre-processing. All models are pre-trained on
the LSK dataset and fine-tuned on the GSC dataset unless otherwise stated.

Analysis on Objective Functions. The choice of objective function
is paramount in learning effective representations. Table 2 reports the
experimental results according to the various loss functions.

When one-stage training is applied without pre-training, the softmax
and AM-Softmax show reasonable performance. The AP loss shows
weak performance, since the loss requires sufficient number of classes
to learn distinctive embeddings, but the limited number of classes in the
GSC dataset hinders models’ generalisation. On the other hand, when the
pre-training and fine-tuning are performed, the model trained with AP loss
in both stages shows the best performance on most metrics. Comparing
this model to the baseline model trained with the softmax loss on the only
GSC dataset, the performance gap between them stands out.

Effect of Pre-training. As reported in Table 2, the pre-trained models
without the fine-tuning stage do not perform well because LSK dataset’s
characteristics are different from that of GSC in terms of acoustics and
word isolation. When the model is fine-tuned with the softmax loss, the
performance of the model deteriorates when compared to the model trained
with only the GSC dataset. On the other hand, fine-tuning the model with
metric learning-based objective functions enhances the performance of the
model. In particular, the model pre-trained and fine-tuned with AP loss
outperforms the other models.

In addition, when 1-shot enrollment is conducted, the performance of
our best model is even better than that of the baseline [19] which uses
10-shot enrollment.

Ablation on the quantity of pre-training data. We perform ablations
on the dataset configuration by changing (1) the number of the samples per
keyword, and (2) the number of keywords while maintaining the number
of samples per keyword. In both cases, the total number of samples is the
same. As shown in Table 3, reducing the number of samples or the number



Training loss EER ↓ Acc ↑ F1-score ↑ FRR@FAR=2.5 ↓ FRR@FAR=10 ↓
Pre-train Fine-tune 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot
[19] w/ Inc. Training - - 9.0† - - - - - - - - 17.0† - - 8.3†

-
Softmax 17.31 9.52 7.79 69.57 84.13 84.10 0.68 0.84 0.84 44.47 24.30 19.83 24.17 8.83 6.03
AM-Soft 17.43 8.91 7.20 63.43 84.60 86.97 0.63 0.85 0.87 55.10 21.33 18.30 26.57 7.73 5.10

AP 20.47 9.33 8.50 61.37 80.30 80.13 0.60 0.80 0.80 56.53 26.60 23.00 35.47 8.57 6.93

Softmax

- 30.77 20.64 19.01 47.07 62.23 67.23 0.47 0.63 0.68 66.10 59.57 44.10 51.20 36.87 27.77
Softmax 16.91 11.00 9.20 69.47 83.23 85.47 0.68 0.83 0.85 48.33 26.67 21.67 25.10 11.67 8.67
AM-Soft 10.47 4.75 4.01 85.43 94.80 95.33 0.85 0.95 0.95 24.20 6.90 5.97 10.87 3.07 2.03

AP 10.10 5.20 3.77 83.53 94.23 95.00 0.83 0.94 0.95 23.00 7.67 5.47 10.23 3.40 2.20

AM-Soft

- 34.78 26.87 22.65 41.73 56.83 63.30 0.43 0.58 0.64 75.77 75.00 61.53 61.80 51.23 38.87
Softmax 23.60 15.38 13.80 53.17 70.50 77.93 0.54 0.70 0.78 65.23 44.07 37.87 41.73 22.73 18.27
AM-Soft 10.88 6.54 5.64 85.13 92.57 93.63 0.85 0.93 0.94 26.40 11.87 9.60 11.63 4.80 3.50

AP 11.80 6.57 4.80 80.27 92.40 93.07 0.79 0.92 0.93 28.20 12.43 7.63 13.70 4.70 3.13

AP

- 32.70 24.81 21.01 41.23 60.03 69.37 0.45 0.61 0.70 80.50 74.03 57.67 59.60 50.77 36.23
Softmax 15.81 10.97 8.87 70.07 80.77 83.33 0.71 0.81 0.84 55.10 29.60 20.77 25.83 12.07 7.57
AM-Soft 8.08 5.31 4.27 88.53 94.03 95.53 0.88 0.94 0.96 17.10 7.50 5.67 6.90 3.37 2.60

AP 7.77 4.49 3.24 89.97 93.93 95.97 0.90 0.94 0.96 16.77 6.67 4.20 5.93 2.47 1.20

Table 2: Experimental results using different loss functions. All numbers are in percent (%) except the F1-score. FRR@FAR=10: False Rejection Rate at
False Alarm Rate of 10%; AM-Soft: Additive Margin Softmax loss; AP: Angular Prototypical loss; †: digitized from the DET curve on Figure 9(a) of [19].

Dataset # Classes # Samples EER ↓ Acc ↑ F1-score ↑ FRR@FAR=2.5 ↓ FRR@FAR=10 ↓

LSK

500 500 4.13 94.50 0.95 6.07 2.13
500 1,000 3.94 94.60 0.95 5.23 1.97

1,000 500 3.63 95.07 0.95 5.13 1.47
1,000 1,000 3.24 95.97 0.96 4.20 1.20

LSK+KSK 2,000 1,000 3.07 95.63 0.96 3.73 1.20

Table 3: The effect of pre-training data on final system performance. All numbers are in percent (%) except for F1-score. All experiments in this table
utilise the Angular Prototypical (AP) loss.

(a) Trained only on the GSC dataset. (b) Pre-trained only on the LSK dataset. (c) Pre-trained on the LSK dataset, then fine-tuned
on the GSC dataset.

Fig. 2: t-SNE visualisation of the embedding of unseen keywords. All different colours indicate different keywords. When pre-training and fine-tuning
are conducted, the model better represents user-defined keywords in the distinctive embedding space.

of classes degrades the KWS performance. The results emphasise that the
number of classes is a more important factor for the model to generalise
well to unseen user-defined keywords. From this observation, we further
enlarge the number of classes by adding the KSK dataset to the LSK
dataset. When pre-trained on both datasets, the model gains performance
even when the additional dataset is composed of another language.

Qualitative Results. We visualise the embeddings extracted from KWS
models on the t-SNE plot [34] in Fig. 2. The plot shows how well
our model separates the user-defined keywords for each of the different
training strategies. As illustrated in Figs. 2a and 2b, the models trained
on the GSC dataset or only pre-trained on the LSK dataset cannot extract
distinctive embeddings from the unseen audios. On the other hand, Fig. 2c
shows that the proposed training strategy, where the model is pre-trained
and fine-tuned sequentially, improves both inter-class compactness and
intra-class separation in the embedding space.

Effect of CER-based filtering. We verify the effect of the proposed
CER-based filtering method in Table 4. Except for the use of data filtering,
all other training details are constant. Comparing the performance, the
model trained on the filtered data outperforms the model trained on the

unfiltered data. Therefore, we confirm that removing the misaligned audio
samples using the filtering process has a positive effect on performance.

Filtering EER ↓ Acc ↑ F1-score ↑ FRR@FAR=2.5 ↓ FRR@FAR=10 ↓
✗ 3.47 95.67 0.96 4.83 1.47
✓ 3.24 95.97 0.96 4.20 1.20

Table 4: Results with and without the proposed CER-based filtering. All
numbers are in percent (%) except for F1-score.

5. CONCLUSION

In this paper, we have proposed a novel metric learning-based training strat-
egy for user-defined KWS task to represent spoken keywords in the discrim-
inative embedding space. We collect large-scale out-of-domain keyword
data, LSK dataset, to pre-train a model that can be utilised in various KWS-
based downstream tasks. Furthermore, we fine-tune the model on in-domain
but non-overlapping classes to improve generalisation to the target task.

We provide extensive ablations of the different factors that can affect
the user-defined KWS performance. The experiments demonstrate that our
best model achieves the state-of-the-art performance on the user-defined
KWS task.



6. REFERENCES

[1] Seungwoo Choi, Seokjun Seo, Beomjun Shin, Hyeongmin Byun,
Martin Kersner, Beomsu Kim, Dongyoung Kim, and Sungjoo Ha,
“Temporal convolution for real-time keyword spotting on mobile
devices,” arXiv preprint arXiv:1904.03814, 2019. 1

[2] Peter Mølgaard Sørensen, Bastian Epp, and Tobias May, “A
depthwise separable convolutional neural network for keyword
spotting on an embedded system,” EURASIP Journal on Audio,
Speech, and Music Processing, vol. 2020, no. 1, pp. 1–14, 2020. 1

[3] Byeonggeun Kim, Simyung Chang, Jinkyu Lee, and Dooyong Sung,
“Broadcasted residual learning for efficient keyword spotting,” arXiv
preprint arXiv:2106.04140, 2021. 1

[4] Axel Berg, Mark O’Connor, and Miguel Tairum Cruz, “Keyword
transformer: A self-attention model for keyword spotting,” arXiv
preprint arXiv:2104.00769, 2021. 1

[5] Jaesung Huh, Minjae Lee, Heesoo Heo, Seongkyu Mun, and
Joon Son Chung, “Metric learning for keyword spotting,” in IEEE
Spoken Language Technology Workshop. IEEE, 2021, pp. 133–140. 1

[6] Florian Schroff, Dmitry Kalenichenko, and James Philbin, “Facenet:
A unified embedding for face recognition and clustering,” in Proc.
CVPR, 2015, pp. 815–823. 1

[7] Kihyuk Sohn, “Improved deep metric learning with multi-class
n-pair loss objective,” in NeurIPS, 2016, vol. 29. 1

[8] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew
Zisserman, “VGGFace2: A dataset for recognising faces across pose
and age,” in IEEE International Conference on Automatic Face &
Gesture recognition. IEEE, 2018, pp. 67–74. 1

[9] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman,
“Voxceleb2: Deep speaker recognition,” in Proc. Interspeech, 2018. 1

[10] Jixuan Wang, Kuan-Chieh Wang, Marc T Law, Frank Rudzicz, and
Michael Brudno, “Centroid-based deep metric learning for speaker
recognition,” in Proc. ICASSP. IEEE, 2019, pp. 3652–3656. 1

[11] Yoohwan Kwon, Hee-Soo Heo, Bong-Jin Lee, and Joon Son Chung,
“The ins and outs of speaker recognition: lessons from voxsrc 2020,”
in Proc. ICASSP. IEEE, 2021, pp. 5809–5813. 1

[12] Pete Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” arXiv preprint arXiv:1804.03209, 2018. 1

[13] Abhijeet Awasthi, Kevin Kilgour, and Hassan Rom, “Teaching
keyword spotters to spot new keywords with limited examples,”
arXiv preprint arXiv:2106.02443, 2021. 1, 2

[14] Mark Mazumder, Colby Banbury, Josh Meyer, Pete Warden, and
Vijay Janapa Reddi, “Few-shot keyword spotting in any language,”
arXiv preprint arXiv:2104.01454, 2021. 1, 2

[15] Jinmiao Huang, Waseem Gharbieh, Han Suk Shim, and Eugene
Kim, “Query-by-example keyword spotting system using multi-head
attention and soft-triple loss,” in Proc. ICASSP. IEEE, 2021, pp.
6858–6862. 1, 2

[16] Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael
Wagner, and Morgan Sonderegger, “Montreal forced aligner:
Trainable text-speech alignment using kaldi.,” in Proc. Interspeech,
2017, vol. 2017, pp. 498–502. 1, 2

[17] Tara Sainath and Carolina Parada, “Convolutional neural networks
for small-footprint keyword spotting,” 2015. 1

[18] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra,
“Hello edge: Keyword spotting on microcontrollers,” arXiv preprint
arXiv:1711.07128, 2017. 1

[19] Li Liu, Mingxue Yang, Xinyi Gao, Qingsong Liu, Zhengxi Yuan, and
Jun Zhou, “Keyword spotting techniques to improve the recognition
accuracy of user-defined keywords,” Neural Networks, vol. 139,
pp. 237–245, 2021. 1, 3, 4

[20] Archit Parnami and Minwoo Lee, “Few-shot keyword spotting with
prototypical networks,” in Proc. ICML, 2022, pp. 277–283. 1

[21] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: an asr corpus based on public domain
audio books,” in Proc. ICASSP. IEEE, 2015, pp. 5206–5210. 2, 3

[22] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty,
Michael Kohler, Josh Meyer, Reuben Morais, Lindsay Saunders,
Francis M Tyers, and Gregor Weber, “Common voice: A massively-
multilingual speech corpus,” arXiv preprint arXiv:1912.06670, 2019.
2

[23] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael
Auli, “wav2vec 2.0: A framework for self-supervised learning of
speech representations,” NeurIPS, vol. 33, pp. 12449–12460, 2020. 2

[24] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu, “Additive
margin softmax for face verification,” IEEE Signal Processing
Letters, vol. 25, no. 7, pp. 926–930, 2018. 2

[25] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,
Jingchao Zhou, Zhifeng Li, and Wei Liu, “Cosface: Large margin
cosine loss for deep face recognition,” in Proc. CVPR, 2018, pp.
5265–5274. 2

[26] Jake Snell, Kevin Swersky, and Richard Zemel, “Prototypical
networks for few-shot learning,” in NeurIPS, 2017, vol. 30. 2

[27] Joon Son Chung, Jaesung Huh, Seongkyu Mun, Minjae Lee, Hee Soo
Heo, Soyeon Choe, Chiheon Ham, Sunghwan Jung, Bong-Jin
Lee, and Icksang Han, “In defence of metric learning for speaker
recognition,” in Proc. Interspeech, 2020. 2

[28] Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno,
“Generalized end-to-end loss for speaker verification,” in Proc.
ICASSP. IEEE, 2018, pp. 4879–4883. 2

[29] Yura Hwang, “Korean Speech Commands,” https://aihub.
or.kr/aihubdata/data/view.do?currMenu=115&
topMenu=100&aihubDataSe=realm&dataSetSn=96,
2020. 3

[30] David Snyder, Guoguo Chen, and Daniel Povey, “Musan: A music,
speech, and noise corpus,” arXiv preprint arXiv:1510.08484, 2015. 3

[31] Raphael Tang and Jimmy Lin, “Deep residual learning for
small-footprint keyword spotting,” in Proc. ICASSP. IEEE, 2018,
pp. 5484–5488. 3

[32] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014. 3

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer, “Automatic differentiation in pytorch,”
2017. 3

[34] Laurens Van der Maaten and Geoffrey Hinton, “Visualizing data using
t-sne.,” Journal of machine learning research, vol. 9, no. 11, 2008. 4


