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Abstract

Transformers have rapidly overtaken CNN-based architectures
as the new standard in audio classification. Transformer-based
models, such as the Audio Spectrogram Transformers (AST),
also inherit the fixed-size input paradigm from CNNs. How-
ever, this leads to performance degradation for ASTs in the in-
ference when input lengths vary from the training. This pa-
per introduces an approach that enables the use of variable-
length audio inputs with AST models during both training
and inference. By employing sequence packing, our method
ElasticAST, accommodates any audio length during training,
thereby offering flexibility across all lengths and resolutions
at the inference. This flexibility allows ElasticAST to main-
tain evaluation capabilities at various lengths or resolutions and
achieve similar performance to standard ASTs trained at spe-
cific lengths or resolutions. Moreover, experiments demon-
strate ElasticAST’s better performance when trained and eval-
uated on native-length audio datasets. Code can be found at:
https://github.com/JiuFengSC/ElasticAST
Index Terms: Audio Spectrogram Transformers, Audio Clas-
sification

1. Introduction
Until not long ago, convolution-based neural networks were the
prominent approach in both computer vision [1, 2] and audio
processing [3]. More recently, transformers [4] have made a sig-
nificant impact on numerous computer vision [5, 6, 7, 8, 9, 10,
11] and audio processing tasks [12, 13, 14, 15, 16, 17, 18, 19,
20], and CNN-based architectures are being replaced with these
attention-based architectures. Despite this replacement, trans-
formers still adhere to the fixed-size input paradigm as CNNs
do. Similarly, Audio Spectrogram Transformers (ASTs) [12]
take a fixed-size input where the input spectrograms are divided
into fixed-size patches to create tokens as input for the trans-
former encoder. To obtain a fixed-size input, audio spectro-
grams are either trimmed or padded to a fixed size. Considering
transformers can process any sequence length, using varying
input sizes rather than fixed ones, can be a more optimal and
natural choice for audio processing tasks.

This fixed input size paradigm poses several challenges and
flaws: (1) Recent datasets, such as VoxCeleb and Epic-Sounds,
consist of audio recordings of various lengths (see Figure 2).
Considering the recent developments in using in-the-wild data,
self-supervised learning, and multimodal learning, having data
in various lengths becomes quite natural. (2) Trimming or
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Figure 1: Standard ASTs vs. ElasticAST. Standard ASTs’ per-
formance degrades when evaluated on audio lengths different
from their trained lengths, while ElasticAST remains flexible to
varying lengths.

padding the input data is a suboptimal choice, as it can eas-
ily lead to the discarding or contamination of information. (3)
AST-based models lack flexibility when evaluated with inputs
of different lengths or temporal resolutions, both of which re-
sult in varying sequence lengths, compared to those used dur-
ing training. This necessitates training different AST models for
circumstances with varying sequence length requirements, such
as computation budget or memory consumption. Overall, these
considerations make standard ASTs relatively limited. There-
fore, it is appealing to explore the flexibility of sequence lengths
in Audio Spectrogram Transformers. Specifically, this involves
designing a single AST model capable of handling variable in-
put sequence lengths during both training and inference.

In this work, we present ElasticAST, an Audio Spectrogram
Transformer model that turns standard AST into a model ca-
pable of processing audio of any length or temporal resolution
during both training and inference without trimming or padding.
The resulting model is functionally superior to standard ASTs
as it maintains its performance across various lengths or resolu-
tions of audio during the inference stage and also delivers better
performance on datasets containing audio of various lengths.

There are previous approaches that explore different se-
quence lengths or temporal resolutions in AST-based archi-
tectures. [21, 22] focus on providing patch-size flexibility to
ASTs and ViTs. Different patch sizes lead to different sequence
lengths. Patch sizes are randomly selected during training, and
a resizing algorithm is applied to convert the patch embedding
weights accordingly for the different patch sizes. As a result,
models gain flexibility with different patch sizes during the in-
ference stage. Our method follows a similar direction in terms
of providing flexibility to sequence length during both train-
ing and inference stages. However, instead of patch sizes, our
model focuses on variable lengths and temporal resolutions of
audio inputs. Another related work is [23], which uses mixed
resolutions of audios to train ASTs efficiently. The main idea
is to process lower-resolution audio (coarse) early in training,



Figure 2: Variable Length Datasets and standard AST training
input. Due to the fixed-length processing constraints, ASTs dis-
card informative tokens and introduce non-informative tokens.

and then fine-tune with high-resolution data (fine) later in a hi-
erarchical manner. Rather than offering flexibility, this work
focuses on training efficiency. In contrast, our model randomly
mixes various resolutions of audios during training at once with-
out employing any curriculum learning strategy, making the
model capable of seamlessly processing any temporal resolu-
tion of audio in the inference. Moreover, both of these previous
works still use fixed length input. The work most similar to ours
is NaViT [24], which allows Vision Transformers to handle a
variety of image resolutions. Inspired by the discoveries in this
study, we investigate appropriate methods to make adaptations
to the standard ASTs for flexibility across all lengths and tem-
poral resolutions of audio. To accomplish this task, we take the
following steps (shown in Figure 3): (1) Instead of using a fixed
audio length or resolution during training, we randomly select
the resolution or use the variable native length of the audios
without trimming or padding. (2) We pack these audios of dif-
ferent lengths (or resolutions) into a single sequence to process
them all at once during training. (3) We use the standard AST
architecture with minimal changes, such as limiting the scope of
attention to each individual sample to prevent it from attending
to other samples within a packed sequence, and replacing the
class tokens with a masked attention pooling mechanism. The
rest of the model remains identical. We summarize the contri-
butions of our work as follows:
• We demonstrate that standard Audio Spectrogram Trans-

formers (ASTs) lack the flexibility to be trained and evalu-
ated on variable lengths or resolutions different from those
on which they were initially trained.

• We introduce an approach that enables the creation of Elasti-
cAST which allows standard ASTs to be trainable with vari-
able native lengths or temporal resolutions of audio.

• ElasticAST is a single AST model capable of operating
across all lengths and resolutions at the inference stage with-
out significant performance degradation, while achieving
performance comparable to standard ASTs trained at fixed
lengths or resolutions.

• We show that, in addition to flexible model usage, Elas-
ticAST can surpass the performance of standard ASTs on
datasets of variable lengths, such as VoxCeleb and Epic-
Sounds, by leveraging the full semantic content of audio
without the need for cutting or padding.

2. Approach
2.1. Preliminaries
The Audio Spectrogram Transformer (AST [12]) utilizes a
transformer-based architecture to process audio spectrograms.

Figure 3: Our ElasticAST framework.

It starts by splitting each spectrogram x ∈ Rf×t from a batch
X ∈ RB×f×t into a sequence of S smaller patches: x → xi ∈
Rp×p, where i ranges from 0 to S and S = (f/p) × (t/p).
These patches are then converted into embeddings via a linear
projection layer ei = P (xi) ∈ RD . Next, a special [cls]
token is prepended to the sequence, increasing the length to
N = S + 1. The learnable positional embeddings are added
to provide the order information of the tokens. The sequences
are then transformed by the transformer encoder. The encoder’s
output for the [cls] token acts as the audio spectrogram’s rep-
resentation for downstream tasks, such as classification.

2.2. Architectural changes
ElasticAST is a conceptually simple extension of standard
ASTs, designed to accommodate the use of various audio spec-
trogram lengths during both the training and inference stages.
This flexibility is achieved with minimal architectural modifi-
cations to conventional ASTs.
Sequence Packing. Unlike AST, which allocates N tokens
for all the B input spectrograms, our model employs a se-
quence packing method that accommodates the varying lengths
by organizing the spectrograms into token sequences X ∈
RB′×N′×D after patchification as illustrated in Figure 3. This
method initiates by sequentially filling the first token sequence
row with tokens derived from the samples until reaching the
preset token limit per row, L′ (as a default set to 2048). If the
tokens from a sample about to surpass this limit, they are de-
ferred to the subsequent row, and the allocation process contin-
ues accordingly for the remaining samples. This packing tech-
nique generates B′ rows of token sequences, each potentially
varying in length but constrained by L′. To facilitate process-
ing by the transformer encoder, as shown in Figure 3, we intro-
duce minimal padding tokens to each row, standardizing their
lengths to N ′ ≤ L′, which corresponds to the longest sequence
length among the rows. Our approach to packing is deliberately
straightforward, prioritizing simplicity by processing samples
sequentially in their original order and filling rows on a first-
come, first-served basis. Future work may investigate more so-
phisticated packing algorithms to enhance efficiency.
Mask Self-Attention. In conventional patch-based transformer
models [12, 5], only the tokens from the same sample form
a row, and these tokens are aware of each other within the
transformer encoder through global attention, formalized as
Attention(Q,K, V ) = softmax

(
QKT

)
· V where Q,K, V ∈



RB×N×D . However, this mechanism becomes impractical
when sequences are comprised of tokens from different sam-
ples, as it fails to constrain the attention within the tokens of the
same sample. To address this, our architecture is designed to
prevent tokens from different samples within the same sequence
from attending to one another. We achieve this by introducing
a Masked Self-Attention mechanism. The main idea is to intro-
duce a boolean mask M ∈ BB′×N′×N′

for each sequence in
a batch, where Mb,i,j represents if the ith token should attend
to th jth token in bth sequence, thus encoding within sample
attention. Then, we modify the original attention mechanism
as: Attention(Q,K, V ) = softmax

(
Mask(QKT )

)
· V where

Q,K, V ∈ RB′×N′×D , by selectively preventing cross-sample
attention, visually represented by different colors in Figure 3.
Mask Attention Pooling. After the sequences are processed
by the transformer encoder without cross-sample attention
contamination, the representation of each sample before the
linear classifier is obtained through Mask Attention Pooling
[25]. In AST, each sequence row has a prepended [cls]
token used as the representation of that sample. For the
ElasticAST, rather than coupling a [cls] token with each
packed sample, we employ a Mask Attention Pooling layer
on the top of the encoder to derive sample representations,
serving as an effective alternative. This architecture mirrors the
previously described Mask Self-Attention mechanism, wherein
the K,V ∈ RB′×N′×D matrices are obtained from the input,
while another Q′ ∈ RB′×n×D matrix is generated from the
repetition of a learnable query vector parameter q ∈ RD ,
where n refers to the maximum number of packed samples
in all rows. Then, with a generated mask M ∈ BB′×n×N′

where Mb,i,j corresponds to if jth token in the bth sequence
belongs to the ith sample. Then, the mask attention pooling,
AttnPool = softmax

(
Mask(Q′KT )

)
· V , subsequently

extracts representations X ∈ RB′×n′×D , in a similar way of
employing masking to ensure pooling is confined to tokens
within a sample, as depicted by the cone shadow areas in
Figure 3. Afterward, the obtained sequence is unpacked into
X ∈ RB×D by reordering the representations of each sample,
treating them as the [cls], and fed into the linear classifier.

3. Experiments
3.1. Datasets and Evaluation Metrics
Datasets. In our experiments, we utilize four datasets:
AudioSet, VGGSound, VoxCeleb, and Epic-Sounds. Au-
dioSet [26] is a large multi-label dataset with approximately
2 million 10-second clips spanning 527 labels across diverse
audio categories. VGGSound [27] includes around 200,000 10-
second video clips, labeled with 309 sound classes such as ob-
jects and human activities. VoxCeleb [28] is an audio-visual
dataset focused on human speech, featuring 1,251 speakers and
approximately 145,000 utterances across a range of durations
from 4 to 144 seconds. For experimental purposes, we impose
a hypothetical upper limit of 30 seconds on this dataset to sim-
plify the experiments and manage the memory usage effectively.
Lastly, Epic-Sounds [29], derived from first-person (egocentric)
videos, includes 44 categories and a total of 75.9k audio files of
various lengths (see Figure 2). Similar to VoxCeleb, we set a
provisional maximum duration of 30 seconds for this dataset,
though this limit can be adjusted as needed.
Evaluation metrics. Given the presence of multi-labels in each
AudioSet sample, we use mean average precision (mAP) for
evaluation across all categories. For the other datasets, we re-

Figure 4: Results on variable native length audios.

port the Top-1 classification accuracy (Acc) as our measure of
evaluation since each sample has only a single label.

3.2. Implementation Details
In this paper, the configuration for standard ASTs follows the
same choices as those in [21]. The batch and the patch size are
set to 12 and 16 (B/16) respectively, and all models are initial-
ized with ViT [30] (ImageNet Pretrained) for every dataset, ex-
cept for VoxCeleb, where SSAST [13] weights are employed.
The learning rate is established at 1e-5 for all datasets, apart
from the Epic-Sounds dataset, which is set at 1e-4 by follow-
ing [29]. To accommodate varying audio lengths, we shifted
from a 1D to a 2D positional [31, 32] embeddings, encoding fre-
quency and time positions separately. Our ElasticAST uses the
identical settings as the standard ASTs in this paper. Additional
minor architectural changes are already discussed in Section 2.
By default, we use a window of 25 ms with a frame shift of 10
ms to transform waveforms into 128 mel-fbank. The resulting
mel-spectrogram shapes for 10-second audio clips are as fol-
lows: for AudioSet and VGGSound, 128 × 1024. For variable-
length audio clips (in VoxCeleb and Epic-Sounds), the resulting
temporal length dimension is different according to the native
length of the audios. We adjust the frame shift (Fshift) hyperpa-
rameter for each different audio resolutions so that the temporal
length dimension changes accordingly. All the results that are
used to draw graphs in this paper are available anonymously at
https://sites.google.com/view/elasticast-interpseech24.

3.3. Results of Various Length Training
We perform experiments with various natural lengths of audio
to assess the potential of ElasticAST. Thus, we use VoxCeleb
and Epic-Sounds datasets, which consist of various lengths of
audio as shown in Figure 2, for the experiments in this section.
For the sake of memory, the maximum length of the audio is
limited to 30 seconds (see Section 3.1). ElasticAST is trained at
the native length of the audio by packing them into batches of
sequences without cutting or padding. Meanwhile, AST mod-
els are trained at fixed length by trimming and padding as they
can not accommodate varying input lengths during training. We
compare the performance of ElasticAST to various AST models
in two perspectives. First, We evaluate the performance of Elas-
ticAST by using the native length of the audios in the inference
stage without any alteration, while standard ASTs are evaluated
with the audio lengths at which they are trained. All of these
results are depicted with scattered dots in Figure 4. Second, we
evaluate every model at a series of audio lengths xi from 256 to
3072, such that standard ASTs always apply cutting or padding
whenever the native length of the audio is not xi. However, our
model only cuts the audio if the native length is longer than xi;
otherwise, no padding is applied, and the native audio is pro-
cessed as is.
Summary. (1) ElasticAST performs well with various data
lengths. In contrast, when AST models are evaluated at a dif-
ferent time length than the ones used during training, their per-



Figure 5: Results on various resolutions.

formance collapses. (2) ElasticAST on native length audio can
surpass the performance of all standard ASTs by leveraging the
full semantic content of audio without the need for cutting or
padding (indicated by scattered dots). (3) During inference,
with the increasing audio length, more semantics are provided,
and ElasticAST can adapt to this change by utilizing a larger se-
mantic volume to boost its performance towards saturation. The
more data it can process, the better it performs. However, AST
models do not necessarily improve their performance. We hy-
pothesize that the semantic volume that AST can handle is fixed
during training. (4) During the training of ElasticAST, no infor-
mation in the dataset is discarded by trimming, and meanwhile,
fewer padded tokens are used, as shown in Table 1. However,
the AST model has to trim longer audio or add non-informative
padding tokens to fit them into its length requirement. Given
the same amount of calculated tokens, ElasticAST consumes
a larger meaningful semantic volume. This highlights the re-
source consumption efficiency of our architecture.

3.4. Results of Various Temporal Resolutions Training
This section presents the results of ElasticAST using various
temporal resolutions. We parameterize the temporal resolution
through the Fshift (frame shift) value when generating spectro-
grams [33, 23]. This value determines the length and, conse-
quently, the detail/resolution of the spectrogram. We tempo-
rally compress the mel-spectrograms by a factor of Ci, where
the frame-shift value is multiplied by randomly sampled Ci

from C = {1.0, 1.2, 1, 4, ...3.8, 4.0} during training (mixed-
resolution training). Conventional ASTs are trained with a
fixed resolution since they cannot accommodate varying input
lengths during training. We compare our ElasticAST to stan-
dard ASTs during inference across multiple compression rates
on VGGSound and AudioSet, as illustrated in Figure 5. The
rationale behind choosing these two datasets is that they consist
of fixed-length audios, and we convert them into various lengths
through different compression rates (Fshift values).
Summary. (1) Our results show that ElasticAST possesses
significant flexibility in handling a wide range of resolutions
across both datasets. In comparison, the performance of stan-
dard ASTs declines when tested at resolutions different from
those used in training. (2) Beyond flexibility, our model gen-
erally matches or surpasses the performance of standard ASTs,
even on the resolutions for which standard ASTs were specifi-
cally trained. (3) Our model allows for the training of a single
model adaptable to various resolutions, unlike standard ASTs,
which must be trained individually for each resolution. This
means that, within a given inference budget, ElasticAST can
seamlessly adjust to any computational budget, whereas stan-
dard ASTs would require training a new model for each specific
computational scenario.

3.5. Ablation Study
The main focus of ElasticAST is to provide flexibility to AST
models for using variable time length audio input in both the

Models-Batch# Pad Ratio(%) Cut Ratio(%)

AST-All 31.1 15.2

ElasticAST-12 19.2 0

ElasticAST-64 14.4 0

ElasticAST-128 13.9 0

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Compression Rate

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
c

VGGSound

AST Cut 75%
AST Cut 66%
AST Cut 50%
AST Cut 0%
ElasticAST-Cut

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Compression Rate

0.2

0.3

0.4

0.5

0.6

Ac
c

VGGSound

AST Pool 4
AST Pool 3
AST Pool 2
AST Pool 1
ElasticAST-Pool

Table 1: Token Usage and Ablation Result.

training and inference stages. In Section 3.4, we present the re-
sults of using various temporal resolutions. The time length
is changed through the Fshift operation. Additionally, there
can be other methods for reducing temporal length [34, 23].
In this ablation study, we investigate average pooling strategy
in ElasticAST for using various temporal lengths. By follow-
ing [23], a mel-spectrogram is processed through an extra layer
of average-pooling. This layer uses a kernel and stride both
sized 1×C, effectively reducing the mel-spectrogram’s tempo-
ral dimension by a factor of C. The training and experimental
settings are identical to those described in Section 3.4, except
for the new reduction method, average pooling, which requires
integer numbers. Therefore, only the values C = {1, 2, 3, 4}
are used as compression rates. To save computational time and
resource, we conduct this experiment on VGGSound. The re-
sults are shown in the right side of Table 1. Similar to the Fshift
approach, ElasticAST also demonstrates flexibility in handling
various range of temporal lengths with this method.

3.6. Analysis on Token Usage
In this section we analyze the token usage efficiency of Elasti-
cAST and standard ASTs when various length audios are given
during training. Due to fixed-length processing constraints,
StandardASTs either cut or pad the inputs. In contrast, Elas-
ticAST flexibly handles audios of varying lengths without re-
sorting to cutting or padding operations. However, as described
in Section 2, when packing audios of different lengths into a se-
quence, we use padding to standardize the length of the token
sequence rows, L′. Using the VoxCeleb dataset, our findings are
presented in Table 1. The results reveal that StandardAST in-
troduces non-informative padding tokens, which occupy 31.1%
of the total training tokens, and cut 15.2% of the tokens in train-
ing set. In contrast, ElasticAST minimizes padding and applies
no cutting. Moreover, as batch size increases, the amount of
padding tokens used for packing decreases. This analysis high-
lights ElasticAST’s training efficiency in processing informa-
tive content.

4. Conclusion
In conclusion, this paper focuses on enhancing Audio Spec-
trogram Transformers (ASTs) to support training and infer-
ence with audios of various lengths. By introducing a strategy
that employs mixed-length training and requires only minimal
architectural adjustments to the AST framework, we develop
ElasticAST. This model is capable of being trained with audios
of varying lengths and demonstrates flexibility without perfor-
mance loss across different lengths, offering one single model
for all audio lengths and resolutions. ElasticAST’s significance
lies in its efficiency and adaptability to different computational
budgets without the need for re-training. The ability to handle
audio of various lengths is becoming increasingly important,
considering the recent developments in self-supervised multi-
modal learning that utilizes in-the-wild data. ElasticAST’s flex-
ibility is particularly valuable for tasks involving alignment, re-
trieval, and generation in multimodal contexts.
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