
FROM COARSE TO FINE:
EFFICIENT TRAINING FOR AUDIO SPECTROGRAM TRANSFORMERS

Jiu Feng*, Mehmet Hamza Erol*, Joon Son Chung, Arda Senocak

Korea Advanced Institute of Science and Technology, South Korea

ABSTRACT

Transformers have become central to recent advances in audio clas-
sification. However, training an audio spectrogram transformer, e.g.
AST, from scratch can be resource and time-intensive. Furthermore,
the complexity of transformers heavily depends on the input audio
spectrogram size. In this work, we aim to optimize AST training by
linking to the resolution in the time-axis. We introduce multi-phase
training of audio spectrogram transformers by connecting the semi-
nal idea of coarse-to-fine with transformer models. To achieve this,
we propose a set of methods for temporal compression. By employ-
ing one of these methods, the transformer model learns from lower-
resolution (coarse) data in the initial phases, and then is fine-tuned
with high-resolution data later in a curriculum learning strategy. Ex-
perimental results demonstrate that the proposed training mechanism
for AST leads to improved (or on-par) performance with faster con-
vergence, i.e. requiring fewer computational resources and less time.
This approach is also generalizable to other AST-based methods re-
gardless of their learning paradigms.

Index Terms— Audio Spectrogram Transformers, Audio Clas-
sification, Efficient Training, Temporal Redundancy

1. INTRODUCTION

Convolutional Neural Networks (CNNs) and, more recently, trans-
formers have made a significant impact on numerous computer vi-
sion and audio processing tasks. Among these tasks, audio classifi-
cation is a central research topic that assigns labels to the given audio
inputs. The existing transformer-based approaches employ a patch-
based system for audio classification [1, 2, 3, 4, 5, 6, 7, 8], where the
input spectrograms are divided into fixed-size patches to create to-
kens as input for the transformer backbone. With the paradigm shift
toward transformer-based approaches, an emerging thread of work
also aims to explore efficient ways of optimizing the complexity of
transformers, as it increases quadratically with the input sequence
length. Recent works aim to reduce the quadratic complexity to
make transformers more efficient for audio processing applications.
Koutini et al. [4] propose a method called Patchout, which efficiently
drops patches while concurrently disentangling the positional encod-
ings of both time and frequency axes. Later, masked auto-encoder
approach is employed to reduce the number of tokens, either through
reconstruction objectives [5, 6, 7] or direct prediction of representa-
tions [9] for masked input patches. Unlike the approach of drop-
ping the input patches, HTS-AT [3] leverages a hierarchical shifted
window approach known as the Swin Transformer [10], originally
employed in the domain of vision. Subsequently, another hierarchi-
cal strategy, known as multi-scale transformers [8, 11], is applied

*These authors contributed equally to this work.

Method Architecture Multi-Phase AudioSet (mAP)

Baseline - CNN14 [12] CNN ✗ 43.20
Pool2 [13] CNN ✗ 42.60

Baseline - AST [1] Transformer ✗ 44.30
Pool2 Transformer ✗ 42.79
Pool2�1 Transformer ✓ 44.35

Table 1: Audio transformer models need multi-phase training
for efficient learning. Simple low-resolution training only works
for CNNs. “Pool2” indicates training on 2 times compressed spec-
trograms. “Pool2 � 1” denotes initial phase of training on 2 times
compressed spectrograms, followed by training on full resolution.

in the audio domain by hierarchically expanding the channels while
reducing the spatial resolution in the model.

As aforementioned, the existing transformer-based approaches
in the audio domain take spectrograms as input. When extracting
the spectrograms, varying resolutions in time result in a different
number of tokens to train the transformer backbone. Our goal is
to link the resolution in the time-axis to efficient training of Audio
Spectrogram Transformers [1]. We posit that employing different
resolutions in training audio classification models can be both intu-
itive and beneficial. Firstly, as discussed in [13, 14], spectrograms
may exhibit temporal redundancy. Audio patterns can be uniformly
continuous or periodic [15, 16]. Thus, shortening the time dimen-
sion can eliminate the redundancy in the input spectrogram, resulting
in a reduction in computational cost and time. Secondly, following
a fundamental principle in vision on input resolution, models that
learn from coarse to fine-grained data can achieve performance im-
provements due to the scale invariance of the representations.

The use of reduced input signals for computational efficiency in
audio classification has been investigated by [17, 13] in the context
of CNNs only. Xubo et al. [13] propose simple pooling methods,
such as max pooling, average pooling, and etc., to eliminate tem-
porally redundant information and enhance efficiency. By training
the model with temporally reduced audio input, it performs simi-
larly to the baseline that uses the original input, as shown in Table
1. However, training the audio spectrogram transformer (AST) di-
rectly with the temporally reduced input results in a significant per-
formance drop compared to the baseline. This highlights that train-
ing efficient ASTs with lower-resolution inputs requires a different
approach. We conjecture that training ASTs in a curriculum learn-
ing fashion, starting from coarse to fine-grained data, can help mit-
igate this issue [18, 19]. As shown in Table 1, curriculum learning
(fine-tuning with higher resolution data) achieves comparable per-
formance while also reducing computational costs and time.

In this work, we propose curriculum learning-based training us-
ing the resolution of the audio signals as a proxy. This approach
leads to efficient audio spectrogram transformer training, achieving
comparable or better accuracy-to-computation tradeoffs compared to

...

...

...... Classification
Output

Pooling
Layer

Classification
Output

...

......

...

...

Tokenization
Layer

Audio
Model

Tokenization
Layer

Frame Shift
10 ms

...

...

...

...

...

Audio
Model

Patch Size
16x16

Frame Shift
10ms

Pool Size
1xC

Frame Shift
10C ms

Patch Size
16x16C

Patch Size
16x16

In
iti

al
 P

ha
se

s

...

...

...

...

...

...

Fi
na

l
Ph

as
e

Load W
eights

Load W
eights

Frame Shift
10 ms

Fig. 1: Illustration of initial and final phase pipelines in our proposed training method. Fshift, Pool, and Patch are compression methods
from Section 2.3. In the initial training phases, only one of them will be employed to get f × t

C
number of tokens. Each method’s unique

contribution compared to the original pipeline is color-highlighted. Given numbers reflect the AST’s original training settings.

the widely used AST. To accomplish this task, we take the follow-
ing steps (shown in Figure 1): (1) AST training is split into two (or
multiple) phases. In the initial phase, the model is trained with input
that has a lower resolution in the time-axis obtained through various
reduction methods. Subsequent phases leverage higher resolution
(eventually the original resolution) audio data. (2) We design vari-
ous reduction methods, such as Frame-Shift, Pooling, and Patchifi-
cation. One of these methods is employed during the initial phases of
training. (3) While transitioning into subsequent phases, the model
weights (e.g. positional embeddings) are appropriately adapted to
match the token numbers of the new phase. Based on these steps,
our proposed training mechanism for AST [1] yields improved (or
on-par) performance and requires fewer resources compared to the
baseline model on four standard audio classification datasets. We
conduct extensive ablation studies of our design choices. Moreover,
we demonstrate that this approach can be further generalized to other
AST-based approaches, such as HTS-AT [3] and SSAST [2].

2. APPROACH

2.1. Mel-Spectrogram and Complexity
Given a waveform W ∈ R1×L, an Audio Spectrogram Trans-
former processes its corresponding mel-spectrogram (mel-spec),
represented as X = mel(W) ∈ RF×T , where mel(·) de-
notes the spectrogram generator module. This mel-spectrogram
is first patchified and then tokenized into a sequence of tokens
S = Token(X) ∈ R(f×t)×d, using the tokenization layer
Token(·). The term f × t indicates the number of tokens. This
sequence of tokens then serves as the input for the transformer’s en-
coder layers. It is important to note that when using square-shaped
patches, the length of the time axis has a significant impact on the
token count. This, in turn, influences the complexity, which grows
quadratically. Drawing from the insights of [13], we hypothesize
that mel-specs may contain surplus temporal information during the
early training phases, as the model might not need such a detailed
representation initially. Therefore, by starting the training with a
coarser temporal perspective and refining it progressively, we can
improve the learning efficiency by potentially achieving compa-
rable or better accuracy-to-computation tradeoffs compared to the
traditional training methods.

2.2. Multi-phase Training
Our method splits the training into multiple phases. In the first phase,
we apply one of the temporal compression methods (details are in
Section 2.3) to the input mel-specs, reducing the number of tokens
along the time axis by a factor of C, yielding f × t

C
tokens. By in-

troducing coarse data, the model can quickly assimilate generalized
features, which guides the model weights into a good latent space.
During the transition into the subsequent phases, the value of C is
reduced, and we transfer the trained weights from the previous phase
by appropriately adapting the parameters that depend on the number
of tokens (e.g. interpolating the positional embeddings). Further-
more, the training settings, such as the learning rate, optimizer, and
etc., are reset to their initial values.

2.3. Compression Methods
We investigate three distinct strategies for the temporal compression.
Figure 1 provides an illustration depicting the roles of these methods.
Change Frame-Shift Size (Fshift): Mel-spectrograms are con-
structed by specifying frame-size and frame-shift values, which are,
for instance, set to 25ms and 10ms by default in AST [1]. In this
method, the frame-shift value is multiplied by a factor of C when
generating a mel-spec, which results in a temporally compressed
mel-spec X̂ .

X̂ = mel′(W) ∈ RF× T
C (1)

Max/Avg Pooling (Pool): Before tokenizing a mel-spec, we pass it
through an additional max- or average-pooling layer with the kernel
and stride of size 1 × C, resulting in a temporal reduction of the
mel-spec by a factor of C.

Avg(X): X̂ [i, j] =
1

C

C−1∑
n=0

X [i, C · j + n]

Max(X): X̂ [i, j] = max
n∈[0,C−1]

X [i, C · j + n]

(2)

where i ∈ [0, F) and j ∈ [0, T
C
).

Flexible Patchification (Patch): In the tokenization process,
patches typically have a square shape, denoted as p × p. Inspired
by [20], we apply a rectangular patch size of p × Cp during to-
kenization. As each patch becomes C times wider, the number
of patches along the time dimension also decreases by a factor of
C, resulting in temporal compression. Note that even though this
method uses the full-resolution audio signal, we still consider it a
compression method since it reduces the number of tokens. The
models that employ this method apply either bilinear interpolation
(BL) or PI-Resize operator (PI) [20, 21] when transferring the patch
embedding weights from the previous phase.

Ŝ = Token′(X) ∈ R(f× t
C

)×d (3)

Setting
VGGSound VoxCeleb Kinetics-Sounds AudioSet

Acc FLOPs
Save(%)

Time
Save(%) Acc FLOPs

Save(%)
Time

Save(%) Acc FLOPs
Save(%)

Time
Save(%) mAP FLOPs

Save(%)
Time

Save(%)

Baseline 49.40 - - 41.90 - - 62.92 - - 44.30 - -

Fshift 4�1 49.90 (+0.50) 58.31 55.00 41.95 (+0.05) 42.56 38.89 63.84 (+0.92) 42.56 38.89 43.82 (-0.48) 35.32 33.40
Fshift 2�1 51.43 (+2.03) 46.16 45.00 43.68 (+1.78) 40.18 38.89 63.22 (+0.30) 40.18 38.89 44.10 (-0.21) 30.47 30.00

Avg Pool 4�1 50.49 (+1.09) 58.31 55.00 42.20 (+0.30) 31.45 27.78 62.99 (+0.07) 31.45 27.78 43.98 (-0.32) 35.32 33.40
Max Pool 4�1 50.21 (+0.81) 58.31 55.00 42.01 (+0.11) 53.67 50.00 63.14 (+0.22) 31.45 28.00 43.87 (-0.43) 35.32 33.40
Avg Pool 2�1 49.85 (+0.45) 46.16 45.00 43.75 (+1.85) 40.18 38.89 63.14 (+0.22) 29.07 27.78 43.98 (-0.32) 30.47 30.00
Max Pool 2�1 49.66 (+0.26) 46.16 45.00 43.95 (+2.05) 40.18 38.89 63.66 (+0.74) 17.96 16.67 44.19 (-0.11) 30.47 30.00

Patch BL 4�1 50.61 (+1.21) 58.23 55.00 41.49 (-0.41) 31.36 27.78 63.84 (+0.92) 31.36 27.78 43.96 (-0.34) 35.29 33.40
Patch PI 4�1 50.44 (+1.04) 58.23 55.00 42.07 (+0.17) 20.25 16.67 63.22 (+0.30) 31.36 27.78 44.05 (-0.25) 35.29 33.40
Patch BL 2�1 51.18 (+1.78) 46.11 45.00 44.65 (+2.75) 40.12 38.89 63.33 (+0.41) 29.01 27.78 44.14 (-0.16) 30.44 30.00
Patch PI 2�1 51.61 (+2.21) 46.11 45.00 45.09 (+3.19) 40.12 38.89 63.18 (+0.26) 29.01 27.78 44.16 (-0.14) 30.44 30.00

Table 2: FLOPs and time-saving ratios from 2-phase experiments using proposed compression methods.

Setting VGGSound
(Acc)

VoxCeleb
(Acc)

Kinetics-
Sounds (Acc)

AudioSet
(mAP)

Baseline 49.40 41.90 62.92 44.30

Fshift 4�1 52.31 (+ 2.91) 43.22 (+1.32) 64.14 (+1.22) 44.17 (-0.13)

Fshift 2�1 52.93 (+3.53) 46.71 (+4.81) 64.73 (+1.81) 44.30 (=)

Avg Pool 4�1 52.76 (+3.36) 43.13 (+1.24) 63.81 (+0.89) 44.28 (-0.02)

Max Pool 4�1 52.45 (+3.05) 44.69 (+2.79) 63.62 (+0.70) 44.19 (-0.11)

Avg Pool 2�1 53.42 (+4.02) 46.47 (+4.57) 64.21 (+1.29) 44.22 (-0.08)

Max Pool 2�1 53.17 (+3.77) 46.64 (+4.74) 64.03 (+1.11) 44.35 (+0.05)

Patch BL 4�1 52.97 (+3.57) 41.89 (-0.01) 63.84 (+0.92) 44.17 (-0.13)

Patch PI 4�1 52.48 (+3.08) 42.07 (+0.17) 63.73 (+0.81) 44.28 (-0.02)

Patch BL 2�1 53.08 (+3.68) 46.64 (+4.74) 64.33 (+1.41) 44.38 (+0.08)

Patch PI 2�1 53.17 (+3.77) 47.63 (+5.73) 64.18 (+1.26) 44.38 (+0.08)

Table 3: Performance in the 2-phase approach when trained un-
til convergence without training budget constraints.

3. EXPERIMENTS

3.1. Datasets and Evaluation Metrics
Datasets. We conduct experiments using four datasets: (1) Au-
dioSet, (2) VGGSound, (3) VoxCeleb, and (4) Kinetics-Sounds. Au-
dioSet [22] is a large-scale multi-label dataset with approximately
2 million 10-second clips, featuring 527 labels across diverse au-
dio categories. The balanced set is curated from the full set by se-
lecting around 20K samples. VGGSound [23] consists of ∼200K
10-second videos labeled with 309 sound classes. VoxCeleb [24]
provides an audio-visual dataset of human speech, containing 1251
speakers with approximately 145,000 utterances. Kinetics-Sounds
is a subset of Kinetics [25], constructed from 10-second audio clips
from YouTube. In our case, we use around 20K and 2.7K audio
samples for training and testing, respectively.
Evaluation metrics. Due to the existence of multiple labels in each
sample of AudioSet, we use mean average precision (mAP) across
all classes for the evaluation. For the other datasets, we report the
Top-1 classification accuracy (Acc) as samples are assigned only a
single label.

3.2. Experiment setup
Implementation details of baselines. We train the AST baseline on
AudioSet for 5 epochs by using the official configurations in [1]. For
VGGSound, VoxCeleb, and Kinetics-Sounds, we train for 20 epochs
and adopt the setup of the AudioSet training. However, mixup aug-
mentation and weighted averaging are not utilized in these three
datasets. To expedite the processing, non-overlapping patches are
applied to all the datasets. Note that, unlike [2, 5], our VoxCeleb
experiments follow the same training and evaluation pipeline as
the other three datasets, instead of the SUPERB framework [26],
to maintain consistency in implementation and experiments. For
the HTS-AT baseline on AudioSet, we adopt the full setting from

[3] but train for 25 epochs and report the weighted averaging re-
sult of the top 15 checkpoints. On VGGSound, we train for 50
epochs but omit the weighted averaging result. Lastly in SSAST,
we follow the settings of [2] and perform self-supervised pretraining
with patch-based model for 800k iterations on joint AudioSet and
LibriSpeech [27] datasets. The setups of supervised fine-tuning
are identical to what we use in AST. More details are available at
https://sites.google.com/view/coarse-to-fine-audio.

3.3. Main Results
This section presents the results of our proposed training mechanism
in terms of accuracy and resource efficiency, where training is split
into two phases. We temporally compress the mel-spectrograms by
a factor of C during the initial phase, and we report the results for C
values of 2 and 4. The initial training phase is set to approximately
25% of the total number of training epochs in the baseline settings.
Following this rule, our model is trained for 1 epoch on AudioSet
and 5 epochs for the remaining datasets in the initial phase. After-
wards, we transfer the trained weights as the initialization of the final
phase, where we use high-resolution (i.e. original resolution) data for
fine-tuning. When loading weights for the second training phase, we
resize the positional embedding dimensions through bilinear inter-
polation to accommodate the change in the number of tokens.
Accuracy/Computation trade-offs. We analyze our model from
the perspective of saving computational resources. To achieve this,
we terminate the final phase of training at the earliest epoch that
surpasses the baseline performance. All the differences in computa-
tional savings are calculated based on the baseline reference, where
the epoch number with the highest accuracy is selected. The results
presented in Table 2 show that we save from 18% to 58% of FLOPS
while maintaining on-par or better performance than the baseline on
different datasets. The only exception to this is AudioSet, where we
save more than 30% of FLOPs with a negligible drop in mAP as
in [13]. Another observation is that there is no obvious difference
between the compression methods. This highlights that the coarse-
to-fine approach with time-axis compression is beneficial for the ef-
ficient training of AST, regardless of the compression method.
Accuracy/No computational budget constraints. In contrast to the
previous analysis, here we allow the model to train until conver-
gence without considering training budget constraints, solely aim-
ing to achieve the highest performance improvement. As displayed
in Table 3, AST consistently achieves further performance improve-
ments, up to a 4% improvement on VGGSound, except for AudioSet
where the improvements are negligible. These results demonstrate
that the coarse-to-fine approach enables the model to begin learn-
ing from high-level information and gradually progress to important

https://sites.google.com/view/coarse-to-fine-audio

Setting VGGSound VoxCeleb Kinetics-Sounds

Acc FLOPs Save (%) Time Save (%) Acc FLOPs Save (%) Time Save (%) Acc FLOPs Save (%) Time Save (%)

Baseline 49.40 - - 41.90 - - 62.92 - -

Fshift 4�2�1 49.97 (+0.57) 58.68 56.00 42.83 (+0.93) 31.87 28.89 64.36 (+1.44) 42.98 40.00
Avg Pool 4�2�1 50.54 (+1.14) 58.68 56.00 42.42 (+0.52) 42.98 40.00 63.44 (+0.52) 42.98 40.00
Max Pool 4�2�1 50.76 (+1.36) 58.68 56.00 42.29 (+0.39) 42.98 40.00 64.07 (+1.15) 31.87 28.89
Patch BL 4�2�1 50.09 (+0.69) 58.60 56.00 41.29 (-0.61) 20.67 17.78 63.99 (+1.07) 42.89 40.00
Patch PI 4�2�1 50.24 (+0.84) 58.60 56.00 42.25 (+0.35) 31.78 28.89 63.99 (+1.07) 42.89 40.00

Table 4: FLOPs and time-saving ratios from 3-phase experiments using proposed compression methods.

Setting VGGSound VoxCeleb Kinetics-Sounds
(Acc) (Acc) (Acc)

Baseline 49.40 41.90 62.92

Fshift 4�2�1 53.51 (+4.11) 43.81 (+1.91) 65.25 (+2.33)

Avg Pool 4�2�1 53.52 (+4.12) 43.91 (+2.01) 65.25 (+2.33)

Max Pool 4�2�1 53.48 (+4.08) 44.41 (+2.51) 64.58 (+1.66)

Patch BL 4�2�1 53.80 (+4.40) 41.89 (-0.01) 64.99 (+2.07)

Patch PI 4�2�1 53.62 (+4.22) 43.11 (+1.21) 65.43 (+2.51)

Table 5: Performance in the 3-phase approach when trained un-
til convergence.

details, thus leading to better performance.

3.4. Ablation on Multi-Phases of Higher Resolution Fine-
Tuning
In the main experiments, the model is trained with one low-
resolution phase and one high-resolution fine-tuning phase. In
this section, we further study the impact of using multiple phases for
fine-tuning. Here, an additional phase is inserted between the initial
phase and the final phase of fine-tuning, resulting in a three-phase
training. Specifically, the model is sequentially trained with the
(4�2�1) variant, where the model is first trained with a compres-
sion rate of C = 4, and then progressively fine-tuned with C = 2
and C = 1, which represents the original resolution in the final
phase. We schedule the intervals for the initial phases as 30% of the
baseline total training, resulting in 3 epochs for the initial phases.

Similar to the main experiments, the termination of the final
fine-tuning phase is decided based on two criteria: (1) the earli-
est epoch that surpasses the baseline performance, (2) training un-
til convergence. While the first criterion is for exploring the Ac-
curacy/Computation trade-offs perspective, the latter one is used to
achieve the highest performance improvement without considering
computational resource constraints. The results are shown in Table 4
and Table 5. As the results demonstrate, three-phase training also
brings both training efficiency and performance improvements com-
pared to the baseline. However, we observe that two-phase training
provides competitive performance to three-phase training. There-
fore, we use two-phase training for simplicity.

3.5. Generalization on Different Baselines
To demonstrate the general applicability of the coarse-to-fine train-
ing approach with time resolution reduction to other methods, we
conduct experiments with recent methods, SSAST [2] and HTS-
AT [3], by simply applying our proposed training mechanism to
them. All of these baselines are audio spectrogram transformer
(AST) based methods. For simplicity, we employ the Fshift com-
pression method with the two-phase approach (4�1) and the final
fine-tuning phase is terminated when it surpasses the baseline perfor-
mance. The models are evaluated on the VGGSound and AudioSet
datasets in these experiments. The results are shown in Table 6.
HTS-AT. Similar to the main experiments, here we set the duration
of the initial phase training to approximately 25% of the total num-
ber of training epochs in the HTS-AT baseline settings. As Table 6

Setting FLOPs
Save (%)

AudioSet VGGSound

mAP Time
Save (%) Acc Time

Save (%)

Baseline HTS-AT - 46.92 - 52.82 -
Fshift 4�1 21.13 46.75 (-0.17) 10.50 52.98 (+0.16) 14.32

Baseline SSAST - 29.42 - 45.46 -
Fshift 4�1 34.58 30.28 (+0.87) 31.73 47.78 (+2.31) 31.73

Table 6: Results for HTS-AT (using AudioSet-2M) and SSAST
(using AudioSet-20K). Experiments utilize the Fshift compression
method in 2 phases, beginning with C = 4.

illustrates, the coarse-to-fine training approach saves around 20% of
training FLOPs while providing on-par performance with the base-
line. Note that HTS-AT is already a very efficient transformer-based
method, and our training paradigm further enhances its efficiency.
SSAST. Since SSAST is a self-supervised method, it undergoes pre-
training before being applied to downstream tasks [2]. Generally, the
pre-training phase is the most time and computation-intensive stage.
Therefore, we apply our coarse-to-fine training paradigm during the
pre-training stage. The model is initially pre-trained for 100K iter-
ations with low-resolution data, followed by 500K iterations in the
final phase with the original resolution. We utilize the joint AudioSet
and LibriSpeech datasets for training, adhering to the baseline set-
ting. As shown in Table 6, the coarse-to-fine training paradigm leads
to improved performance in downstream tasks, while simultaneously
achieving more than a 30% reduction in training FLOPs and time.
Moreover, these results indicate that the proposed training mech-
anism is generalizable to other AST-based methods, regardless of
their learning paradigms, i.e. whether supervised or self-supervised.

4. CONCLUSION
In this paper, we focus on the efficient training of audio spectro-
gram transformers with the motivation of temporal redundancy in
spectrograms. We propose a coarse-to-fine training, initially using
low-resolution input in the time-axis, progressively fine-tuning with
higher resolution. Our experiments demonstrate on-par or better
performance while saving computational resources. Furthermore,
we show that this approach is generalizable to other AST-based
methods. Transformers achieve optimal performance with large
datasets [28]. Considering that the audio domain does not have
a dataset of similar size compared to vision yet, efficient training
for audio transformers will play a crucial role in future research.
Moreover, learnable schedulers for the phase transition can be also
explored.

5. ACKNOWLEDGMENT
This work was supported by the National Research Foundation of
Korea grant funded by the Korean government (Ministry of Sci-
ence and ICT, RS-2023-00212845) and the ITRC (Information
Technology Research Center) support program (IITP-2024-RS-
2023-00259991) supervised by the IITP (Institute for Information &
Communications Technology Planning & Evaluation).

6. REFERENCES

[1] Yuan Gong, Yu-An Chung, and James Glass, “AST: audio
spectrogram transformer,” in Proc. Interspeech, 2021.

[2] Yuan Gong, Cheng-I Lai, Yu-An Chung, and James Glass,
“SSAST: self-supervised audio spectrogram transformer,” in
Proc. AAAI, 2022.

[3] Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-
Kirkpatrick, and Shlomo Dubnov, “HTS-AT: a hierarchical
token-semantic audio transformer for sound classification and
detection,” in Proc. ICASSP, 2022.

[4] Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Ger-
hard Widmer, “Efficient training of audio transformers with
patchout,” in Proc. Interspeech, 2022.

[5] Alan Baade, Puyuan Peng, and David Harwath, “MAE-AST:
masked autoencoding audio spectrogram transformer,” in Proc.
Interspeech, 2022.

[6] Po-Yao Huang, Hu Xu, Juncheng B Li, Alexei Baevski,
Michael Auli, Wojciech Galuba, Florian Metze, and Christoph
Feichtenhofer, “Masked autoencoders that listen,” in NeurIPS,
2022.

[7] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru
Harada, and Kunio Kashino, “Masked spectrogram modeling
using masked autoencoders for learning general-purpose audio
representation,” in Proc. PMLR, 2022.

[8] Wentao Zhu and Mohamed Omar, “Multiscale audio spectro-
gram transformer for efficient audio classification,” in Proc.
ICASSP, 2023.

[9] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru
Harada, and Kunio Kashino, “Masked modeling duo: Learn-
ing representations by encouraging both networks to model the
input,” in Proc. ICASSP, 2023.

[10] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo, “Swin transformer: Hi-
erarchical vision transformer using shifted windows,” in Proc.
CVPR, 2021.

[11] Yuchen Liu, Natasha Ong, Kaiyan Peng, Bo Xiong, Qifan
Wang, Rui Hou, Madian Khabsa, Kaiyue Yang, David Liu,
Donald S Williamson, et al., “Mmvit: Multiscale multiview
vision transformers,” arXiv preprint arXiv:2305.00104, 2023.

[12] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu
Wang, and Mark D Plumbley, “Panns: Large-scale pre-
trained audio neural networks for audio pattern recognition,”
IEEE/ACM Trans. on Audio, Speech, and Language Process-
ing, 2020.

[13] Xubo Liu, Haohe Liu, Qiuqiang Kong, Xinhao Mei, Mark D.
Plumbley, and Wenwu Wang, “Simple pooling front-ends for
efficient audio classification,” in Proc. ICASSP, 2023.

[14] Haohe Liu, Xubo Liu, Qiuqiang Kong, Wenwu Wang, and
Mark D Plumbley, “Learning the spectrogram temporal res-
olution for audio classification,” in Proc. AAAI, 2024.

[15] Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Na-
grani, Andrea Vedaldi, and Andrew Zisserman, “Audio-visual
synchronisation in the wild,” in Proc. BMVC., 2021.

[16] Arda Senocak, Junsik Kim, Tae-Hyun Oh, Dingzeyu Li, and
In So Kweon, “Event-specific audio-visual fusion layers: A
simple and new perspective on video understanding,” in Proc.
WACV, 2023.

[17] Federico Colangelo, Federica Battisti, and Alessandro Neri,
“Progressive training of convolutional neural networks for
acoustic events classification,” in Proc. EUSIPCO, 2021.

[18] Saghar Irandoust, Thibaut Durand, Yunduz Rakhmangulova,
Wenjie Zi, and Hossein Hajimirsadeghi, “Training a vision
transformer from scratch in less than 24 hours with 1 gpu,”
arXiv preprint arXiv:2211.05187, 2022.

[19] Runze Li, Dahun Kim, Bir Bhanu, and Weicheng Kuo, “Re-
clip: Resource-efficient clip by training with small images,”
TMLR, 2023.

[20] Jiu Feng, Mehmet Hamza Erol, Joon Son Chung, and Arda
Senocak, “FlexiAST: Flexibility is what AST needs,” in Proc.
Interspeech, 2023.

[21] Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde
Caron, Simon Kornblith, Xiaohua Zhai, Matthias Min-
derer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip
Pavetic, “FlexiViT: One model for all patch sizes,” in Proc.
ICCV, 2023.

[22] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal,
and Marvin Ritter, “AudioSet: An ontology and human-labeled
dataset for audio events,” in Proc. ICASSP, 2017.

[23] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zis-
serman, “VGGSound: A large-scale audio-visual dataset,” in
Proc. ICASSP, 2020.

[24] Arsha Nagrani, Joon Son Chung, Weidi Xie, and Andrew Zis-
serman, “VoxCeleb: Large-scale speaker verification in the
wild,” Computer Speech and Language, 2020.

[25] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim
Green, Trevor Back, Paul Natsev, et al., “The kinetics human
action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[26] Shu-Wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff
Lai, Kushal Lakhotia, Yist Y. Lin, Andy T. Liu, Jiatong Shi,
Xuankai Chang, et al., “SUPERB: speech processing universal
performance benchmark,” in Proc. Interspeech, 2021.

[27] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: An ASR corpus based on public
domain audio books,” in Proc. ICASSP, 2015.

[28] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” in Proc. ICLR, 2021.

	 Introduction
	 Approach
	 Mel-Spectrogram and Complexity
	 Multi-phase Training
	 Compression Methods

	 Experiments
	 Datasets and Evaluation Metrics
	 Experiment setup
	 Main Results
	 Ablation on Multi-Phases of Higher Resolution Fine-Tuning
	 Generalization on Different Baselines

	 Conclusion
	 Acknowledgment
	 References

