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Abstract
This paper introduces VoxSim, a dataset of perceptual voice

similarity ratings. Recent efforts to automate the assessment
of speech synthesis technologies have primarily focused on
predicting mean opinion score of naturalness, leaving speaker
voice similarity relatively unexplored due to a lack of exten-
sive training data. To address this, we generate about 41k utter-
ance pairs from the VoxCeleb dataset, a widely utilised speech
dataset for speaker recognition, and collect nearly 70k speaker
similarity scores through a listening test. VoxSim offers a valu-
able resource for the development and benchmarking of speaker
similarity prediction models. We provide baseline results of
speaker similarity prediction models on the VoxSim test set and
further demonstrate that the model trained on our dataset gener-
alises to the out-of-domain VCC2018 dataset.
Index Terms: speaker similarity, neural speech synthesis, mean
opinion score, automatic assessment

1. Introduction
In many areas of machine learning, the objective is to train

models that emulate human cognitive abilities and aim to match
human-level performance [1, 2]. However, there are cases
where AI has outperformed human capabilities [3, 4]. Speaker
recognition is a notable domain where AI models have shown
superiority over human abilities. ECAPA-TDNN [5] repre-
sents significant progress in the field of speaker verification,
demonstrating an Equal Error Rate (EER) of less than 1% on
the VoxCeleb benchmark dataset [6]. Recently, self-supervised
learning-based models have shown even superior verification
performance [7, 8]. In contrast, human performance in speaker
identification falls considerably short. Huh et al. [9] report
that Amazon Mechanical Turk crowdworkers achieve an EER
of 26.51% on the same dataset, and even expert researchers in
speaker recognition demonstrate an EER of 15.77%. This indi-
cates a substantial gap between the speaker characteristics that
speaker recognition systems can extract and what humans can
discern.

This gap leads to several issues, particularly when evaluat-
ing the speaker similarity of synthesised speech using speaker
recognition systems. One common goal of speech generative
models is to produce a consistent voice that closely matches a
reference voice [10, 11, 12, 13]. Therefore, part of the evalua-
tion of these systems is to verify the speaker similarity between
the synthesised speech and the reference voice. An objective
verification method involves extracting speaker feature embed-
dings from both voices using a speaker recognition model and

The dataset is available from
https://mm.kaist.ac.kr/projects/voxsim

Table 1: Data statistics for VCC2018, internal dataset from
Deja et al. [19], and our VoxSim. # spks.: Total number of
speakers. # pairs: Total number of utterance pairs. ratings:
Total number of similarity ratings. Unseen test spks.: Whether
the speakers in the test split were unseen during training. Pub-
lic: Whether the dataset is public.

Dataset # spks. # pairs # ratings Unseen
test spks. Public

VCC2018 12 21,562 30,864 ✗ ✓
Deja et al. [19] 13 18,493 730,308 ✗ ✗

VoxSim 1,251 41,578 69,409 ✓ ✓

measuring their cosine similarity [14, 15, 16, 17]. However,
this score often significantly deviates from what humans per-
ceive [18, 19]. As a result, the evaluation of synthesised speech
relies heavily on subjective evaluation, a process that requires
considerable time and resources.

To address this problem, techniques to automate speaker
similarity assessment for synthetic speech are needed but have
not been well-explored. To the best of our knowledge, there
have been only two attempts at this automation. SVSNet [18]
is the first end-to-end neural network model designed to evalu-
ate speaker similarity between converted and natural speech in
a voice conversion task. SVSNet takes raw waveforms as input
rather than using handcrafted features to analyse speech more
accurately and introduces a co-attention mechanism to resolve
length and content mismatches between the two voices. This
structure achieves an utterance-level linear correlation coeffi-
cient of 0.574 on the VCC2018 [20] speaker similarity evalua-
tion dataset, released by the voice conversion challenge. Deja et
al. [19] propose an automated method to evaluate speaker sim-
ilarity by extending the speaker verification system. They syn-
thesise speech samples using 354 modern text-to-speech sys-
tems and collect MUSHRA scores [21] from listening tests to
build their own dataset. The authors build a regression model to
predict MUSHRA speaker similarity scores from speaker em-
beddings of two utterances and propose a loss to compensate
for data imbalance.

The primary challenge in developing automated speech
evaluation models is the scarcity of public data [22, 23]. The
VCC2018 dataset, utilised for training SVSNet, comprises
30,864 speaker similarity scores for 21,562 pairs of converted
and natural utterances from 36 voice conversion systems. Each
pair is evaluated by 1 to 8 subjects through crowdsourced listen-
ing tests. In Deja et al.’s study, the model is trained and evalu-
ated on data collected by the authors, which has not been made
publicly available. The training data are limited not only in size
but also in the diversity of speakers, with both datasets featur-
ing a very small number of speakers. The VCC2018 dataset
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Figure 1: Distributions of (a) individual scores, (b) average scores per utterance pair, (c) scores for the same speaker pairs, and (d)
scores for different speaker pairs. The x-axis represents the score label and the y-axis represents the number of ratings.

includes 12 speakers and 32 speaker combinations, whereas the
other dataset contains only 13 target speakers. This limitation
suggests that the trained similarity prediction models may not
perform well on speech pairs from unseen speakers and are not
suitable for evaluating zero-shot systems [24, 25]. Moreover,
both datasets only consist of pairs of natural speech and speech
synthesised by a few selected speech synthesis systems, indicat-
ing a lack of generalisability across different domains.

In this work, we introduce VoxSim, a large-scale open
dataset that evaluates cognitive speaker similarity scores for
speech pairs. To the best of our knowledge, this is the first
dataset specifically crafted for training models that automate
voice similarity assessment. VoxSim consists of approximately
70k similarity ratings from over 1k speakers. Since the utter-
ances are sampled from VoxCeleb1 [6], the evaluation model is
exposed to a variety of channel effects and noise during train-
ing, enhancing its generalisation performance across speech do-
mains. Table 1 compares VoxSim with the previous two datasets
in terms of the number of speakers, pairs, ratings, the unseen
status of test speakers, and their availability to the public. We
provide baseline results for various speaker similarity predic-
tion models on the VoxSim dataset and demonstrate the gener-
alisability of our data through testing on the VCC2018 dataset.

2. VoxSim Dataset
Data source. Speaker similarity ratings are collected using
utterances from VoxCeleb1, which serves as the benchmark
dataset for speaker identification and verification tasks. It con-
sists of utterances extracted from videos uploaded to YouTube,
thus the speech segments contain various acoustic environ-
ments. The speakers encompass a wide range of nationalities
and ages. We create 50k random utterance pairs and conduct a

Figure 2: Speaker similarity annotation page.

Table 2: VoxSim Train and Test set statistics. # spks.: Total
number of speakers. # spk combs.: Total number of speaker
combinations. # pairs: Total number of utterance pairs. # rat-
ings: Total number of similarity ratings.

Set # spks. # spk combs. # pairs # ratings

Train 1,142 24,764 38,802 63,845
Test 109 904 2,776 5,564

Total 1,251 25,668 41,578 69,409

listening test to evaluate the voice similarity. Diverse speaker
combinations are created by organising speaker pairs to ensure
a 1.5 times higher number of different speaker pairs compared
to the same speaker pairs.

Listening test procedure. Twelve evaluators participate in this
listening test and they are asked to evaluate the speaker similar-
ity of each pair on a 6-point Likert scale; 1: Definitely different
speakers, 2: Probably different speakers, 3: Possibly different
speakers, 4: Possibly the same speaker, 5: Probably the same
speaker, and 6: Definitely the same speaker. Evaluators are re-
quested to rate as evenly as possible from 1 to 6 points, aiming
to prevent the dataset’s score distribution from being skewed
towards either 1 or 6. Given the diverse environmental and lin-
guistic contexts present in VoxCeleb dataset, the evaluators are
guided to focus solely on the voice characteristics of the main
speaker, regardless of the content of the utterance, language,
and the acoustic environment. An example annotation page is
shown in Fig. 2.

Quality control. During the listening test, the quality of the
collected scores is controlled through periodic reviews of the
speaker verification rate. Min-max normalisation is utilised to
project the scores between 0 and 1, enabling the calculation of
the EER against the actual speaker labels. If an evaluator’s
EER significantly deviates from the average EER of all eval-
uators, we provide feedback and ask the evaluator to conduct a
re-assessment. At the end of the collection, the average speaker
verification rate for all evaluators is an EER of 17.7%. After the
listening test, pairs with a difference of more than 3 points be-
tween the highest and lowest evaluation scores are considered
outliers and excluded.

Data statistics. The total number of speakers in the collected
data is 1,251, which matches the total number of speakers in
VoxCeleb1. Train and test sets are structured to include distinct
speakers, thereby ensuring the trained models’ generalisation
capabilities for unseen speakers. This division results in 1,142
speakers for training and 109 speakers for testing. After segre-
gating the speakers, refining the collected scores yields 69,409
ratings for 41,578 pairs. In summary, dataset statistics and the
train/test split are provided in Table 2, and the distributions of
scores are illustrated in Fig. 1.



Table 3: VoxSim test set results. pt.: pre-train. ft.: fine-tune.

Model LCC ↑ SRCC ↑ R2 ↑ MSE ↓ ACC ↑

ECAPA-TDNN
pt. speaker recogniser 0.768 0.758 0.521 1.471 0.316

ë ft. on individual scores 0.827 ±0.002 0.824 ±0.004 0.681 ±0.003 0.981 ±0.008 0.412 ±0.003

ë ft. on average scores 0.829 ±0.001 0.828 ±0.001 0.685 ±0.001 0.967 ±0.002 0.419 ±0.006

WavLM-ECAPA
pt. speaker recogniser 0.752 0.736 0.505 1.520 0.306

ë ft. on individual scores 0.833 ±0.001 0.835 ±0.000 0.690 ±0.002 0.951 ±0.005 0.402 ±0.007

ë ft. on average scores 0.835 ±0.002 0.836 ±0.001 0.693 ±0.003 0.943 ±0.010 0.405 ±0.004

SVSNet
train on individual scores 0.758 ±0.001 0.753 ±0.002 0.549 ±0.003 1.384 ±0.009 0.397 ±0.006

train on average scores 0.747 ±0.006 0.742 ±0.006 0.530 ±0.018 1.443 ±0.054 0.378 ±0.005

3. Experimental Setup
3.1. Model architectures

We adopt three model architectures for speaker similarity pre-
diction experiments. ECAPA-TDNN [5] is a state-of-the-art
model designed for automatic speaker verification. Given the
attempts [26, 27] to apply self-supervised learning (SSL) based
models to develop Mean Opinion Scores (MOS) prediction
models to enhance generalisation performance across multiple
speech datasets, WavLM-ECAPA is adopted. This model uses
SSL-based WavLM [8] as a feature encoder. Finally, we also ex-
periment with SVSNet [18], the only publicly available model
specifically designed for predicting speaker similarity.

ECAPA-TDNN. ECAPA-TDNN enhances the traditional Time
Delay Neural Network (TDNN) architecture by incorporating
Squeeze-and-Excitation (SE) blocks to recalibrate channel-wise
feature responses dynamically. Additionally, the model em-
ploys a multi-layer feature aggregation mechanism that en-
hances its ability to capture speaker characteristics across vari-
ous temporal resolutions. This architecture leverages the power
of attention mechanisms and convolutional layers to achieve su-
perior performance in speaker verification.

WavLM-ECAPA. In Chen et al. [7], the authors leverage
speech representations extracted from SSL-based pre-trained
models for automatic speaker verification. The integration of
a pre-trained feature encoder and ECAPA-TDNN downstream
network demonstrates significant improvement in verification
performance. In our experiments, we use WavLM as the fea-
ture extraction model, which has shown strong performance
in several speech processing tasks. WavLM is trained with
masked speech denoising and prediction in the pre-training,
which makes it robust in complex acoustic environments and
effective in preserving speaker identity.

SVSNet. SVSNet takes raw waveforms as input to fully utilise
speech information for prediction and aligns the representations
of the two inputs in two directions through a co-attention mod-
ule. The model can be trained either in a regression manner
using an L2 loss or in a classification manner using a cross-
entropy loss, with the regression approach being shown to be
superior.

3.2. Implementation details

Our implementation is based on the PyTorch [28] framework
and is trained on an NVIDIA RTX A6000 with 48GB of
memory. During the training of ECAPA-TDNN and WavLM-

ECAPA, a 3-second segment from each utterance is randomly
sampled to form a batch. Additionally, for ECAPA-TDNN, an
80-dimensional filterbank is extracted as input. These models
extract a 256-dimensional speaker embedding for each utter-
ance and predict speaker similarity by computing the cosine
similarity between the extracted embeddings. The predicted
score is compared to a similarity label projected on a 0 to 1
scale, and the model is trained using MSE loss. To facilitate
effective speaker feature extraction at the beginning of train-
ing, we use models pre-trained with a speaker identification ap-
proach on the VoxCeleb dataset. An Adam [29] optimizer is
employed with an initial learning rate of 10−5, which decreases
by 5% at each epoch. For SVSNet, a regression-based model
is adopted, following the experimental setup of the original pa-
per [18]1. Every experiment is conducted three times indepen-
dently to reduce the impact of random initialisation, and the av-
erage and standard deviation of these experiments are reported.

3.3. Evaluation metrics

The evaluation is based on the model’s predicted similarity
score compared to the average similarity score of the utterance
pair. The model is evaluated with the following metrics: lin-
ear correlation coefficient (LCC), Spearman’s rank correlation
coefficient (SRCC), coefficient of determination (R2), mean
squared error (MSE), and accuracy (ACC). For accuracy, a pre-
diction is considered a true positive if the predicted similarity
score is within 0.5 from the ground-truth label.

4. Results
4.1. Results on VoxSim test set

We first compare ECAPA-TDNN, WavLM-ECAPA, and SVS-
Net on the VoxSim test set, training each model using either
individual scores or average scores per utterance pair. ECAPA-
TDNN and WavLM-ECAPA are fine-tuned from a pre-trained
speaker recognition model, whereas SVSNet is trained from
scratch as it is not specifically designed for speaker recogni-
tion. The experimental results are summarised in Table 3. Al-
though the pre-trained speaker recogniser ECAPA-TDNN and
WavLM-ECAPA exhibit strong performance on VoxCeleb1,
with speaker verification EERs of 0.96% and 0.43%, respec-
tively, they achieve LCCs of only 0.768 and 0.733 for speaker
similarity prediction, showing much lower correlation than the
models fine-tuned with the VoxSim train set. Notably, WavLM-

1https://github.com/n1243645679976/SVSNet



Table 4: Speaker recognition pre-training ablation.

Model LCC ↑ MSE ↓

SVSNet 0.747 ±0.001 1.443 ±0.054

ECAPA-TDNN
w/o speaker pre-train. 0.761 ±0.001 1.297 ±0.005

w/ speaker pre-train. 0.829 ±0.001 0.967 ±0.002

WavLM-ECAPA
w/o speaker pre-train. 0.806 ±0.002 1.090 ±0.009

w/ speaker pre-train. 0.835 ±0.002 0.943 ±0.010

Figure 3: t-SNE plot for embeddings extracted from (left)
speaker recognition model and (right) speaker similarity pre-
diction model. Different colours represent distinct speakers,
and the number next to the dashed line represents the human-
assessed speaker similarity between two utterances.

ECAPA, despite its higher speaker verification performance,
shows a lower speaker similarity prediction rate compared to
ECAPA-TDNN. This suggests that the speaker recogniser may
lose features related to speaker similarity while focusing on dis-
tinguishing between different speakers and aggregating embed-
dings of the same speaker. There is no clear superiority be-
tween models trained on individual scores and those trained on
average scores. WavLM-ECAPA outperforms the others in all
metrics except for accuracy, where ECAPA-TDNN achieves the
highest accuracy.

Speaker recognition pre-training ablation. In particular, the
fine-tuned ECAPA-TDNN and WavLM-ECAPA exhibit signifi-
cant predictive performance compared to SVSNet, which can be
attributed to the speaker recognition pre-training. To establish
the effectiveness of speaker recognition pre-training, we train
ECAPA-TDNN and WavLM-ECAPA from scratch. As shown
in Table 4, both models perform similarly to SVSNet when
trained without speaker recognition pre-training. However, this
pre-training improves LCC by 8.9% and 3.6%, respectively.
This demonstrates that speaker recognition pre-training signifi-
cantly enhances speaker similarity prediction performance.

Qualitative results from t-SNE plot. To demonstrate that the
speaker similarity prediction model fine-tuned on VoxSim cap-
tures perceptual similarity, we visualise the speaker embeddings
extracted from the model using t-SNE [30] plots. To clearly
show the effect of training, plots for embeddings extracted from
the pre-trained speaker recognition model are also provided for

Table 5: VCC2018 test set results.

Model LCC ↑ MSE ↓

ECAPA-TDNN
pt. speaker recogniser 0.512 1.090

ë ft. on VCC2018 0.576 ±0.001 0.862 ±0.000

pt. on VoxSim 0.562 ±0.004 0.901 ±0.010

ë ft. on VCC2018 0.605 ±0.000 0.806 ±0.001

WavLM-ECAPA
pt. speaker recogniser 0.439 1.286

ë ft. on VCC2018 0.594 ±0.000 0.828 ±0.002

pt. on VoxSim 0.566 ±0.003 0.884 ±0.004

ë ft. on VCC2018 0.609 ±0.000 0.800 ±0.000

SVSNet
SVSNet [18] 0.574 0.844
SVSNet (Ours) 0.575 ±0.001 0.849 ±0.003

pt. on VoxSim 0.509 ±0.004 3.237 ±0.266

ë ft. on VCC2018 0.586 ±0.001 0.839 ±0.006

comparison. As illustrated in Fig. 3, the speaker recognition
model separates different speaker embedding clusters far apart
regardless of perceived speaker similarity, whereas the similar-
ity prediction model accurately reflects perceived speaker sim-
ilarity. Furthermore, each speaker cluster in the speaker simi-
larity prediction model exhibits soft boundaries and is relatively
spread out. This indicates that the model has learnt that human-
perceived speaker characteristics vary depending on the acous-
tic environment of the utterance.

4.2. Results on VCC2018 test set

To verify the utility of our dataset, we test the generalisability
of the models trained on VoxSim using the VCC2018 dataset,
which contains natural and synthesised speech from voice con-
version systems. Experiments are conducted in both zero-shot
and fine-tuning settings, using the same train and test sets as
those in the original SVSNet [18] paper. Table 5 shows the re-
sults on the VCC2018 test set. The fine-tuning results show that
all models pre-trained with VoxSim outperform those trained
solely on VCC2018. ECAPA-TDNN and WavLM-ECAPA
with VoxSim pre-training demonstrate LCC improvements of
5.0% and 2.5%, respectively, over models trained without pre-
training. Interestingly, models trained solely on VoxSim per-
form similarly to those trained on VCC2018, with scores of
0.576 vs. 0.562 for ECAPA-TDNN and 0.594 vs. 0.566 for
WavLM-ECAPA. This demonstrates the excellent generalis-
ability of models trained with VoxSim.

5. Conclusion

We present VoxSim, a speaker similarity evaluation dataset fea-
turing nearly 70k scores for 41k pairs of utterances. This is the
first large-scale dataset specifically collected to develop speaker
similarity prediction models. Our dataset includes 1,251 speak-
ers, and the utterances span a wide range of acoustic envi-
ronments and contents. We collect speaker similarity scores
from 12 evaluators through listening tests and document a de-
tailed test design for data reliability. We provide baseline re-
sults for three speaker similarity prediction model architectures
on VoxSim and demonstrate their generalisability through zero-
shot and fine-tuning experiments on VCC2018 data.
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