

The bilibili system for VoxCeleb Speaker Recognition Challenge 2023

Xingui Zeng, Zhuo Yang, Shiyi Wan, Wei Deng, XiangCao

bilibili

2023-08-20

Data preparation

Training Data

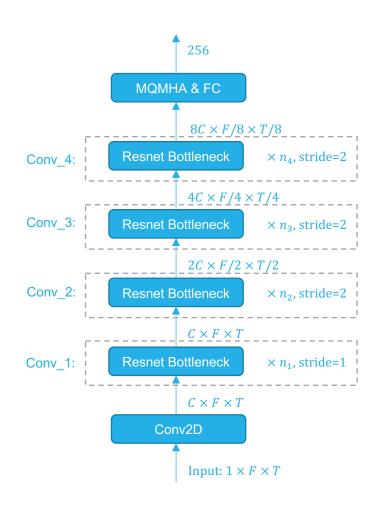
Only VoxCeleb2 dev dataset (1,092,009 utterances and 5,994 speakers)

Augmentation

- Offline speaker augmentation:
 - 5-fold speed augmentation based on the Sox speed function (0.8, 0.9,1.0,1.1,1.2; 29970 speakers total)
- Online augmentation: Chain-like augmentation with a probability of 0.6
 - Noise addition augment with MUSAN dataset.
 - RIR reverberation with RIRs dataset
 - Gain augment

Development Data

- VoxCeleb1-0
- VoxCeleb1-E
- VoxCeleb1-H
- VoxSRC23-val


Features

- Fbank with {80, 96, 120} dimensions
- w/o additional voice activation detection (VAD)
- w/ cepstral mean normalization(CMN)

Architectures

Backbone

Resnet Variants

Name	Features	Resnet Channels	Resnet Depth		
R1	fbank96	32	$3 \times 8 \times 36 \times 3$		
R2	fbank120	32	$3 \times 8 \times 36 \times 3$		
R3	fbank120	64	$3 \times 8 \times 36 \times 3$		
R4	fbank80	32	$10 \times 20 \times 64 \times 3$		

Table 1: Resnet variant

- Four Resnet variants are used.
- To increase the diversity of the models, we make small architectural changes, as shown in Table 1.

Training

Stage 1: Pre-training

- Segment length: 2s
- Optimizer: SGD(momentum 0.9, weight decay 1E-4)
- LR Scheduler: Exponential decrease with warmup(initial lr 0.2, final lr 5r-5)
- Training Objective:
 - AAMSoftmax loss with subcenters and inter-topK penalties
 - gradually increased the margin from 0 to 0.2, scale=32
 - Subcenter: number=3, inter-topK: neighbor=5, penalty=0.06

Stage 2: Large Margin based finetuning

- Segment length: 6s
- Optimizer: SGD(momentum 0.9, weight decay)
- LR Scheduler: Exponential decrease with warmup(initial lr 1e-4, final lr 2.5r-5)
- Training Objective:
 - AAMSoftmax loss with subcenters
 - Margin=0.5, scale=32
 - Subcenter: number=3
- removing the speaker augmentation

Evaluation

- Cosine similarity score was used
- **AS-Norm**: speaker-wise, VoxCeleb2 dev cohorts, top_n=300
- **QMF**:
 - Quality measures: Speech duration, Cosine similarity, AS-normed score, Embedding magnitude
 - we trained an XGBoost to serve as our QMF model.
- **Fusion**: We finetuned the fusion weights of all models based on the results of Voxceleb1-H and VoxSRC 23-val.

Evaluation & Result

• Ablation study on back-end processing method

Methods	EER	MinDCF _{0.05}		
R1	3.221%	0.182		
+Large Magin Fintuning	3.073%	0.162		
++AS-Norm	2.753%	0.151		
+++QMF	2.387%	0.141		

• System result

System	Voxceleb1-O		Voxceleb1-E		Voxceleb1-H		Voxsrc23-val		Voxsrc23-test	
	EER	MinDCF _{0.05}	EER	MinDCF _{0.05}	EER	MinDCF _{0.05}	EER	MinDCF _{0.05}	EER	MinDCF _{0.05}
R1	0.287%	0.014	0.473%	0.028	0.843%	0.048	2.387%	0.141	2.263%	0.1364
R2	0.25%	0.021	0.461%	0.025	0.724%	0.038	2.238%	0.123	-	-
R3	0.261%	0.021	0.535%	0.032	0.898%	0.049	2.436%	0.136	-	-
R4	0.261%	0.016	0.487%	0.027	0.794%	0.04	2.141%	0.122	-	-
Fusion										
$R1\sim R4$	0.165%	0.012	0.412%	0.022	0.66%	0.034	1.835%	0.107	1.7810 %	0.1048

Thank you