

The ID R&D VoxCeleb Speaker Recognition Challenge 2023 System Description

Nikita Torgashov, Rostislav Makarov, Ivan Yakovlev, Pavel Malov, Andrei Balykin, Anton Okhotnikov August 20, 2023

ID R&D Inc., USA, New York {torgashov,makarov,yakovlev,pavel.malov,andrew.balykin,ohotnikov}@idrnd.net

Overview

Datasets

VoxTube-Large

Domain Dataset Filtering

Architectures

Training

Pre-training datasets

Fine-tuning datasets

Scoring

Scoring & Quality Measurement Functions

Fusion scheme

Results

Conclusions

Datasets

- Training data
 - VoxTube-Large
 - VoxCeleb2
- Validation data
 - VoxCeleb1
 - VoxSRC-20, 21, 22, and 23 Dev
- Augmentation
 - MUSAN
 - Real RIRs

Inspired by the idea of the VoxCeleb dataset collection, we adopted and modified the collection method to obtain a similar dataset of increased volume, to which we refer as a **VoxTube-Large**.

The dataset size overcomes the VoxCeleb2 dataset size by a **multiple factor**, and contains about **100K** unique speakers.

A subset of VoxTube-Large is **open-sourced** and will be presented at the Speaker Recognition I section on Tuesday.

Not all speakers in the VoxTube-Large are equally important, due to the high domain gap.

Proposed algorithm:

- Extracted median embeddings for all speakers in VoxTube-Large and VoxCeleb1
- Identified top-50 most similar speakers from VoxTube-Large for each speaker in VoxCeleb1
- Removed speakers from VoxTube-Large with a cosine similarity greater than 0.8

This resulted in a refined domain subset - **VoxTube-30K**, which is 30% of the total dataset size.

Model architectures:

- fwSE-ResNet100
- SSL + ECAPA-TDNN.

As a main architecture we have chosen **ResNet**, that is widely used in speaker recognition and **ECAPA-TDNN** trained on top of the features of self-supervised models, such as **WavLM**, **XLSR**, and **UniSpeech**.

Training

Setup for the fwSE-ResNet100 model

- Pre-training
 - 4-second segments
 - 300 epochs
 - Data augmentation

• Fine-tuning

- 6-second segments
- 30 epochs
- No data augmentation

VoxSRC-23 validation

Pretrain dataset	Pretrain dataset Fine-tune dataset		MinDCF
${\sf VoxTube-Large} + {\sf VoxCeleb2}$	${\sf VoxTube-Large} + {\sf VoxCeleb2}$	2.54	0.141
VoxTube-Large	VoxTube-Large + VoxCeleb2	2.18	0.123

Pretraining on **VoxTube-Large only** shows better performance, considering the same fine-tuning dataset.

VoxSRC-23 validation

Pretrain dataset	Fine-tune dataset	EER,%	MinDCF
VoxTube-Large	$\sf VoxCeleb2 + \sf VoxTube-Large$	2.18	0.123
VoxTube-Large	VoxCeleb2 + VoxTube-30K	1.94	0.105

Fine-tuning on the **VoxTube-30K** works much better, compared to the fine-tuning on the full VoxTube-Large.

• Scoring

- Cosine pairwise, $10\times 4sec~{\rm crops}$
- AS-Norm, VoxCeleb2, top N=100
- Audio content attributes
 - Age
 - Gender
 - Speech length
 - Voice liveness score

- Audio quality measurement
 - NISQA model
 - Signal to Noise detector
 - Babble noise detector
- Model embedding statistics
 - L1 and L2 norm of embedding
 - Mean and STD of embedding

The output of our system is a linear fusion of normalized model scores and QMF values. To find the weights of each component in a **score-level** fusion we used a **Logistic Regression** model with a high L1 penalty on the **VoxSRC-23 dev** set.

Model	Dataset	VoxSRC-23 Dev		VoxSRC-23 Eval	
		EER[%]	$DCF_{0.05}$	EER[%]	$DCF_{0.05}$
WavLM + ECAPA	VC2	3.64	0.195	-	-
WavLM + ECAPA	VC2 + VTL	2.71	0.157	-	-
fwSE-ResNet100	VC2	3.24	0.174	-	-
fwSE-ResNet100	VTL	2.73	0.156	-	-
fwSE-ResNet100	VC2 + VTL	1.94	0.105	2.14	0.110
Fusion	VC2 + VTL	1.45	0.086	1.88	0.096
Fusion $+ \text{ emb. } QMF$	VC2 + VTL	1.06	0.069	1.38	0.078
$Fusion + all \; QMF$	VC2 + VTL	0.94	0.056	1.30	0.076

Where VC2 - VoxCeleb2, VTL - VoxTube-Large, Fusion - linear fusion of 10 models with AS-Norm

- The usage of additional speech data gives a significant performance boost
- The domain dataset filtering extracts the most useful part of the dataset
- The embedding QMF values play a crucial role in the fusion

The ID R&D VoxCeleb Speaker Recognition Challenge 2023 System Description

Nikita Torgashov, Rostislav Makarov, Ivan Yakovlev, Pavel Malov, Andrei Balykin, Anton Okhotnikov August 20, 2023

ID R&D Inc., USA, New York {torgashov,makarov,yakovlev,pavel.malov,andrew.balykin,ohotnikov}@idrnd.net