

The DKU-MSXF Speaker Verification System for the VoxCeleb Speaker Recognition Challenge 2023

——Track 3

Ze Li^{1*}, Yuke Lin^{1*}, Xiaoyi Qin^{1*}, Ning Jiang², Guoqing Zhao², Ming Li¹

¹Data Science Research Center, Duke Kunshan University, Kunshan, China ²Mashang Consumer Finance Co., Ltd, China

- Pre-training
 - Source domain data
- Pseudo-labeling
 - A novel method based on triple thresholds and sub-center purification
- Fine-tuning
 - Pseudo-labeled and ground-truth target domain data
- Score Calibration and Normalization
 - AS-Norm & QMF

- Data usage: Voxceleb2 dev (1092009 utts | 5994 spks)
- Speaker embedding model:
 - SimAM-Resnet100-ASP
 - ResNet100-TSP
 - SimAM-ResNet100-ASP
 - ResNet152-ASP
 - ResNet152-Stat
- Data augmentation:
 - Online 3-fold speed perturbation (Spk Aug)
 - On-the-fly data augmentation (Noise/RIR/Tempo/Vol)
- Loss function: ArcFace (m=0.2, s=32)

unlabeled target

- Removing audios whose duration is less than 1 second.
 - Too short duration audio may not contain text information.
- Extracting speaker embeddings using the pre-trained speaker model.

VoxSRC-23

unlabeled target

- 1. Generating the graph using the K-Nearest Neighbors algorithm.
- 2. Removing the edges with weights less than threshold T1.

Threshold T1

3. Infomap algorithm is employed for initial clustering.

- 1. Computing the cosine similarity between each embedding and all other embeddings from labeled
- target domain data.
 2. Recording the cosine similarity value between each embedding and the first embedding with a different label, and selecting the maximum one as threshold T1.

unlabeled target

- 1. Removing outliers data within each class based on threshold T2.
- 2. Eliminating classes with a data count of less than 10.

Threshold T2

- 1. Calculating the cosine similarity between the embedding of each class and its respective centroid vector from labeled target domain data.
- 2. Then selecting the maximum value from the minimum cosine similarity values of each class as T2.

Data cleaning

unlabeled target

- 1. Assigning pseudo-labels to the unlabeled target domain data after data cleaning.
- 2. Utilizing these pseudo-labeled data as input to train a Sub-Center ArcFace classifier.
- 3. Passing all the data through the classifier and computing the selection probability for each class's sub-center.
- 4. Removing the class which exhibit multiple sub-centers.

unlabeled target

T3

Class 1

Class 3

Progressively merge the classes based on threshold T3. 1.

Class 1

Class 2

Progressively

merge

Class merging

Threshold T3

between the centroid vectors of each class from labeled target Selecting the maximum value as T3.

Loss function: Sub-Center ArcFace (k=3, m=0.3, s=32)

- Scoring
 - Cosine similarity
- AS-Norm
 - randomly select 20,000 utterances (duration over 4s) from unlabeled data as cohort set.
- QMF
 - 1) logarithm the enrollment utterance's duration,
 - 2) logarithm the test utterance's duration,
 - 3) magnitude of the enrollment embedding,
 - 4) magnitude of the test embedding,
 - 5) SNR of the enrollment utterance,
 - 6) SNR of the test utterance,

Table 4: The performance of various systems in the track3.

ID & Model	VoxSRC23 val		VoxSRC23 test		VoxSRC22 test	
	EER[%]	mDCF _{0.05}	EER[%]	mDCF _{0.05}	EER[%]	mDCF _{0.05}
1 SimAM-ResNet100-ASP	7.490	0.342	5.287	0.3037	6.927	0.409
2 ResNet100-TSP(v2)	7.350	0.360		10000000000000000000000000000000000000	10000000000000000000000000000000000000	-
3 SimAM-ResNet100-ASP(v2)	7.525	0.335		-	-	-
4 ResNet152-ASP	7.240	0.347	-		-	12
5 ResNet152-Stat	7.535	0.358	-	-	-	-
Fusion(1+2)	7.115	0.324	5.095	0.2869	-	-
Fusion(1+2+3+4+5)	6.725	0.311	4.952	0.2777	6.584	0.374

Thanks~