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Abstract
This technical report describes our bilibili submissions for the
VoxCeleb Speaker Recognition Challenge 2023 (VoxSRC-23)
in the supervised speaker verification tracks (Track 1). For the
supervised verification track, we trained four Resnet-based sys-
tems with architectural and feature variations. All models were
trained with AAMSoftmax (Additive Angular Margin Softmax)
loss and then fine-tuned with a large margin. Additionally,
we utilized quality-aware score calibration, which incorporates
quality metrics in the calibration system to generate more con-
sistent scores across varying levels of utterance conditions. Fi-
nally, we applied fusion of all systems with both enhancements.
The minDCF of our submission is 0.1048, and the correspond-
ing EER is 1.7810%.
Index Terms: speech recognition, speaker verification

1. System Description
For the supervised verification track, we trained four Resnet-
based systems. This section will focus on the approach we em-
ployed in this challenge.

1.1. Datasets and Data Augmentaion

1.1.1. Training Data

Data augmentation is also quite important in training speaker
verification models. To generate additional fourth speakers,
we first utilized a 5-fold speed augmentation based on the Sox
speed function. Each segment was perturbed by a factor of
0.8, 0.9, 1.1, and 1.2. Since the VoxCeleb 2-dev[1] dataset
comprises 1,092,009 utterances and a total of 5,994 speakers,
we obtained 5,460,045 utterances and 29,975 speakers. After-
ward, we implemented on-the-fly chain-like augmentation with
a probability of 0.6. The effect chain is as follows:
• Noise addition augment with MUSAN[2] dataset.
• RIR reverberation with RIRs[3] dataset.
• gain augment

1.1.2. Developing Set

To assess the performance of our models, we employed four test
sets as our development sets:
• VoxCeleb 1-O[4]: This test dataset comprises only 40 speak-

ers, and we sampled 37,720 trials from it.
• VoxCeleb 1-E: This is an expanded version of VoxCeleb 1-O

and consists of 581,480 trials from 1251 speakers.
• VoxCeleb 1-H: This set has 552,536 trials and is more chal-

lenging since each pair shares the same nationality and gen-
der.

• VoxSRC 23-val: It is the validation set of VoxSRC 2023 and
includes 49,987 trials.

1.2. Features

We utilized Kaldi[5] to extract 81-dimensional, 96-dimensional,
and 120-dimensional log Mel filter bank energies. The window
size was 25ms, and the frame shift was 10ms. We extracted
200 frames of features without additional voice activation de-
tection (VAD). The speech segments were sliced to 2 seconds
and augmented on the fly. All features were cepstral mean nor-
malization.

1.3. Network Structures

Our systems utilized the bottleneck-block-based ResNet[6],
which is one of the most popular convolutional neural networks
for speaker verification tasks.

The pooling layer’s objective is to aggregate the vari-
able sequence to an utterance level embedding, and we
adopted the multi-query multi-head attention pooling mecha-
nism (MQMHA)[7] in our system.

Recently, margin based softmax methods have been widely
used in speaker recognition works.Our system employed the
AAMSoftmax[8] loss with a subcenter method and introduced
the Inter-TopK penalty[7].

1.4. Training Protocol

We conducted our experiments using wespeaker[9] and trained
all of our models in two stages.

In the first stage, we utilized the SGD optimizer with a
momentum of 0.9 and weight decay of 1e-4. We adopted
200 frames of each sample in one batch to prevent over fitting
and accelerate training. We also used an exponential decrease
scheduler, with the minimum learning rate set to 5e-5, and the
initial learning rate set to 0.2. Additionally, we gradually in-
creased the margin from 0 to 0.2[10].

In the large-margin-based fine-tuning[11] stage, we made
some adjustments to the settings used in the first stage. Firstly,
we removed the speed augmented part from the training set to
avoid domain mismatch, leaving only 5,994 classes. Secondly,
we increased the frame size from 200 to 600 and exponentially
increased the margin from 0.2 to 0.5. To ensure training sta-
bility, we removed the Inter-TopK penalty. The learning rate
scheduler was almost the same, with the initial learning rate set
to 1e-4 and the final learning rate set to 2.5e-5.

1.5. Back End

Speaker embeddings were extracted from the fully connected
(FC) layer, and the score was computed using cosine similar-



ity after model training. Afterward, we utilized AS-Norm[12],
QMF[11] (Quality Measure Functions), and score fusion.

For AS-Norm, we based it on the VoxCeleb 2-dev set and
employed speaker-wise adaptive score normalization. We uti-
lized the original VoxCeleb 2-dev dataset without any augmen-
tation and averaged all the embeddings speaker-wise, resulting
in 5,994 cohorts. Then, we calibrated the scores using top 300
imposter scores with this speaker-wise AS-Norm.

For QMF, we used four qualities to form QMF, includ-
ing speech duration computed by an energy-based VAD, score,
normed score, and magnitude of non-normalized embeddings.
We also selected 100k trials from the original VoxCeleb 2-dev
as the QMF training set. Finally, we trained an XGBoost to
serve as our QMF model.

Lastly, we adopted score fusion to further enhance the sys-
tem’s performance.

2. Results
2.1. Sub-Systems

We trained four ResNet-based models, and their details are pre-
sented in Table 1. To increase the diversity of the models, we
make small architectural changes across all four models:
• Changing input feature dimension
• Changing model channels
• Changing model depths
We have also tried other model structures such as RepVGG,
Cam++, ECAPA TDNN, but we couldn’t achieve better results
than Resnet.

Table 1: Resnet variant

Name Features Resnet Channels Resnet Depth

R1 fbank96 32 3× 8× 36× 3
R2 fbank120 32 3× 8× 36× 3
R3 fbank120 64 3× 8× 36× 3
R4 fbank80 32 10× 20× 64× 3

2.2. Ablation Study

We conducted an ablation study on our baseline system in this
subsection. Our baseline system, R1, utilized a ResNet-152
backbone followed by MQMHA pooling and AAM-Softmax.
We evaluated the system’s performance using the Equal Error
Rate (EER) and the minimum Decision Cost Function (DCF)
calculated with CFA = 1, CM = 1, and Ptarget = 0.05 for
different trials. We took the performance of VoxSRC 23-val as
our benchmark, as shown in Table 2.

We first conducted ablation studies by using large-margin
fine-tuning, which improved the EER from 3.221% to 3.073%
and the minDCF from 0.182 to 0.162. After applying AS-Norm,
the EER was further improved to 2.753%, and the minDCF was
reduced to 0.151. Finally, the QMF process achieved an EER
of 2.387% and a minDCF of 0.141.

We followed the same procedure for all of our models, with
the sole variable being the backbone.

2.3. Sub-Systems and Fusion Performance

We used four different backbones to generate distinct repre-
sentations, and Table 3 displays some of our submissions to

Table 2: Ablation Study on the VOXSRC23-val set

Methods EER MinDCF0.05

R1 3.221% 0.182
+Large Magin Fintuning 3.073% 0.162
+AS-Norm 2.753% 0.151
+QMF 2.387% 0.141

VoxSRC 2023, along with our fusion system’s final result. We
fine-tuned the fusion weights of all models based on the results
of VoxCeleb 1-H and VoxSRC 23-val. In the VoxSRC 2023
challenge, our final fusion achieved a 0.1048 minDCF and a
1.7810% EER. Compared to our R4 model, the fusion result im-
proved by 14.10% relatively in minDCF and 16.81% relatively
in EER.

Table 3: Our Submissions to VoxSRC23-test

System Voxsrc23-val Voxsrc23-test
EER MinDCF0.05 EER MinDCF0.05

R1 2.387% 0.141 2.263% 0.1364
R2 2.238% 0.123 - -
R3 2.436% 0.136 - -
R4 2.141% 0.122 - -
Fusion
R1 ∼ R4 1.835% 0.107 1.7810 % 0.1048

3. Conclusions
For this challenge, we utilized ResNet as our backbone and ap-
plied MQMHA pooling layer, Inter-TopK loss, and domain-
based large margin fine-tuning methods. Additionally, we
adopted AS-Norm and QMF. All of these methods, along with
the large backbones, contributed significantly to enhancing the
system’s performance. As a result, our system achieved a final
result of 0.1048 minDCF and 1.781%.
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