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Abstract
This technical report describes the submission of team pyan-
note to the VoxSRC 2023 speaker diarization challenge. It re-
lies on 3 stages: local end-to-end neural speaker segmentation
on a few seconds sliding window, neural speaker embedding of
each speaker of each window, and agglomerative hierarchical
clustering.

1. Introduction
Every single submission made by the pyannote team uses the
multi-stage paradigm depicted above and further described in
details in [1]. It relies on 3 stages: local end-to-end neural
speaker segmentation on a few seconds sliding window, neural
speaker embedding of each speaker in each window, and ag-
glomerative hierarchical clustering. In this technical report, we
only focus on how our submissions differ from [1]. We there-
fore recommend reading [1] first to get the full picture.

Table 1 summarizes the changes we brought to our system
over the course of the VoxSRC 2023 challenge, sorted in chrono-
logical order of submission. All hyper-parameters were tuned to
minimize the diarization error rate (DER) on VoxConverse 0.3
as the unique criterion to decide which run to submit. We only
submitted a run if it was better than the previous one on VoxCon-
verse 0.3, hence avoiding inadvertent or unconscious tuning on
the VoxSRC 2023 leaderboard.

2. Local end-to-end speaker diarization
2.1. Longer windows

While [1] relies on 5-seconds windows with 500ms stride, all
our submissions to the VoxSRC 2023 challenge rely on 10-
seconds windows with 1-second stride. The maximum num-
ber of speakers per window (3) remains unchanged. The rea-
soning behind this change is that speaker embeddings are later
extracted from longer audio samples and hence are more robust.

2.2. Powerset multi-class cross entropy loss

While [1, 2] models speaker diarization as a multi-label classifi-
cation problem (one class per speaker), all our submissions rely
on powerset multi-class cross entropy loss (where dedicated
classes are assigned to pairs of overlapping speakers) for train-
ing the model. Details about this change are available in [3], in
which we found that this leads to much better overlapped speech
detection.

2.3. Larger training set

While [1, 2] relies on models trained on AMI [4], DIHARD [5],
and VoxConverse 0.3.0 [6] development set, we use a large
training set for all our submissions: AISHELL [7], AliMeet-
ing [8], AMI [4], AVA-AVD [9], DIHARD [5], Ego4D [10], MS-
DWild [11], REPERE [12], and VoxConverse 0.3.0 [6]

Starting at submission #2, an additional finetuning on Vox-
Converse 0.3.0 development set is performed systematically
(as it brings a 15% relative DER improvement on VoxCon-
verse 0.3.0 test set).

Starting at submission #7, we used all 232 files of VoxCon-
verse 0.3.0 test set for tuning the clustering threshold (instead
of a small subset of VoxConverse 0.3.0 development set). This
led to a 4% relative DER improvement on VoxSRC2023 test set.

2.4. WavLM feature extraction

While [1, 3] both rely on SincNet trainable features [13], we
replace them by WavLM pretrained features [14].

Starting at submission #3, we used layer 10 of the off-the-
shelf WavLM-large model pretrained on Librispeech [15]. This
brings a 7% relative DER improvement on VoxConverse 0.3.0
test set.

Starting at submission #5, we used layer 8 of WavLM-base
pretrained from scratch on the training set described in previ-
ous section. This brings a 21% relative DER improvement on
VoxConverse 0.3.0 test set.



VoxSRC 2023 VoxConverse 0.3
Submission DER JER DER FA+MD SC
#1 pyannote 2.1 + powerset encoding, 10s windows, larger training set 8.3 45.3 7.6 4.3 3.3
#2 #1 + finetuned on VoxConverse 0.3 6.9 27.8 6.5 3.0 3.5
#3 #2 + switched from SincNet to WavLM (pretrained on Librispeech) 6.3 31.6 6.0 3.1 2.9
#4 #3 + switched speaker embedding from ECAPA-TDNN to ResNet34 5.9 25.8 5.6 3.1 2.5
#5 #4 + pretrained WavLM from scratch on speaker diarization datasets 5.1 28.6 4.4 2.7 1.7
#6 #5 + switched speaker embedding from ResNet34 to ResNet152 5.1 31.2 4.2 2.7 1.5
#7 #5 + optimized clustering threshold on whole VoxConverse 0.3 4.9 31.3 4.4 2.7 1.7
#8 #7 + switched speaker embedding from ResNet34 to ResNet152 4.8 30.6 4.2 2.7 1.5
#9 #8 + further pretrained WavLM on VoxConverse 4.8 28.6 4.0 2.7 1.4

Table 1: Performance of our submissions on VoxSRC 2023 and VoxConverse 0.3 test sets. DER = diarization error rate. JER = Jaccard
error rate. FA = false alarm rate. MD = missed detection rate. SC = speaker confusion error rate. All these metrics are reported with
250ms forgiveness collars, according to the rules of the challenge.

For our final submission (#9), we further pretrained
the WavLM-base (introduced in submission #5) on VoxCon-
verse 0.3.0 development set.

3. Speaker embedding
While [1] relies on SpeechBrain’s pretrained ECAPA-TDNN
speaker embedding [16, 17], we switched to WeSpeaker [18]
pretrained ResNet.

Starting at submission #4, we used ResNet34, bringing a 6%
relative DER improvement on VoxConverse 0.3.0 test set. Sub-
missions #6 and #8 relied on ResNet152, bringing a 4% relative
DER improvement on VoxConverse 0.3.0 test set compared to
submissions #5 and #7 respectively.

4. Conclusion
Our final submission reaches a DER of 4.77% on VoxSRC 2023
test set (with 250ms forgiveness collar). We emphasize that it
is not the fusion of several systems: it is a single system that
follows the paradigm depicted at the top of the first page of this
technical report. It takes 2 hours and 18 minutes to process
the whole VoxSRC 2023 test set (using one single V100 GPU):
approximately 26 times faster than real time.
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P. Joly, “A presentation of the repere challenge,” in 2012 10th
International Workshop on Content-Based Multimedia Indexing
(CBMI), 2012, pp. 1–6.

[13] M. Ravanelli and Y. Bengio, “Speaker recognition from raw wave-
form with sincnet,” in Proc. SLT 2018, 2018.

[14] S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li,
N. Kanda, T. Yoshioka, X. Xiao, J. Wu, L. Zhou, S. Ren, Y. Qian,
Y. Qian, J. Wu, M. Zeng, X. Yu, and F. Wei, “Wavlm: Large-scale
self-supervised pre-training for full stack speech processing,”
IEEE Journal of Selected Topics in Signal Processing, vol. 16,
no. 6, pp. 1505–1518, 2022.

http://dx.doi.org/10.21437/Interspeech.2020-2337


[15] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[16] M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell,
L. Lugosch, C. Subakan, N. Dawalatabad, A. Heba, J. Zhong,
J.-C. Chou, S.-L. Yeh, S.-W. Fu, C.-F. Liao, E. Rastorgueva,
F. Grondin, W. Aris, H. Na, Y. Gao, R. D. Mori, and Y. Ben-
gio, “SpeechBrain: A general-purpose speech toolkit,” 2021,
arXiv:2106.04624.

[17] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-
TDNN: emphasized channel attention, propagation and aggrega-
tion in TDNN based speaker verification,” in Interspeech 2020,
H. Meng, B. Xu, and T. F. Zheng, Eds. ISCA, 2020, pp. 3830–
3834.

[18] H. Wang, C. Liang, S. Wang, Z. Chen, B. Zhang, X. Xiang,
Y. Deng, and Y. Qian, “Wespeaker: A research and produc-
tion oriented speaker embedding learning toolkit,” arXiv preprint
arXiv:2210.17016, 2022.


	 Introduction
	 Local end-to-end speaker diarization
	 Longer windows
	 Powerset multi-class cross entropy loss
	 Larger training set
	 WavLM feature extraction

	 Speaker embedding
	 Conclusion
	 Acknowledgements
	 References

