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Overview 
o Pseudo-labeling framework

n Base model training with source labeled data 
n Embedding domain adaptation
n Pseudo label generation
n Model training with labeled source domain data and pseudo-labeled 

target domain data
n Pseudo-label correction and retraining

o Supervised learning and self-Supervised learning



Base model training & Adaptation

o Base model training
n Using models with as much 

variance as possible, either in 
terms of model structure or the 
training Protocol.

o Adaptation
n Aligning statistics between different domains
n Aligning domain centers is easy and efficient, but aligning the variances need 

backends (LDA & PLDA)
n We will explore variances alignment systematically in the future



Pseudo label generation

o Clustering algorithm :
(a progressive sub-graph clustering algorithm based on two Gaussian fitting and multi-model voting)

o Key points:
n finding high-confidence positive trials using a multi-model voting strategy based 

on the KNN affinity graph
n utilizing connected sub-graphs to obtain pseudo labels
n using iterative top-k information to gradually combine sub-classes
n two Gaussian distributions fitting the intra-class score distribution to check for 

high-confidence edges



Pseudo label generation

o High-confidence edges:

Mdl-1

Mdl-2

Mdl-3

Top5 edges for utt-1

Top10 edges for utt-1

o Connected sub-graphs:

Spk-1
Spk-2

Spk-3Spk-4

Delete  

Constructing k-nearest neighbors graphs for utt-1 by voting

Notes1:
Whether or 
not to 
preserve 
edges also 
depends on 
similarity

Notes2:
Voting strategy 
can greatly 
decrease false 
positive rate Notes3:

Using connected sub-graph can greatly increase 
the intra-class diversity 



Pseudo label generation
o Progressive : o Two Gaussian fitting:

K=5

K=10

Edges_{new.new} Edges_{new.old} Edges_{old.old}

Cal similarity between all utts if combine 

𝜇!, 𝜎!, 𝑤!; 𝜇", 𝜎", 𝑤";
𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 parameters
𝑚𝑎𝑥 𝑎𝑛𝑑 𝑚𝑖𝑛 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛

𝜇" > 𝑡ℎ#$ 𝑂𝑅
𝑤! > 0.5 𝑂𝑅

𝜇! − 𝜎! < 𝜇"+𝜎" + 𝜖

Notes1:
Preventing 
disastrous 
classes 
caused by 
error edges 

Notes1:
proper 
noisy label 
is okay



o Stage 1
n Subcenter is extremely important
n Speed perturbation augmentation is 

used in all data
n Both train the model from scratch 

and utilize models from Track1 as 
the pre-trained model are okay

n For the latter, freezing the extractor 
in the beginning to make models be 
converged is necessary.
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Model training with labeled source domain data and 
pseudo-labeled target domain data

o Stage 2
n CN-Celeb data without speed 

perturbation is used to 
finetune. 

n The VoxCeleb weights of the 
classification layer are 
preserved to prevent 
overfitting.

n Expand chunksize to 6s and 
slightly increase constraint is 
effective



o Error labels:
n 1label-vs-multispk (noisy labels) 
n multilabel-vs-1spk (multi labels)
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Pseudo-label correction and retraining

o noisy labels:
n Subcenter is enough to correct

o multi labels:
n Cal similarity of all audio in CN-Celeb to the two most similar class centers; denoted as 𝑠!" 𝑎𝑛𝑑 𝑠!#; 
n Split audios: 𝑠!">0.5 and 𝑠!#<0.4 high-confidence; 𝑠!">0.5 and 𝑠!#>0.4 median-confidence; 

𝑠!" < 0.5 low-confidence;
n Use audio with median-confidence to find multi labels,
n Use the overlap between two labels to determine whether two labels need to be merged,
n Filter out audio that is low confidence, other audio is labeled by using predicted posterior 

probability.
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Results and calibration



o Self-supervised learning requires no label
o Use supervised learning on labeled data, self-supervised 

learning on all data
o For supervised learning, we used circle loss; for self-supervised 

learning, we adopted DINO loss
o After pseudo-labeling, extract embeddings, averaged speaker-

wise and appended after classification layer weights, continue 
training
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Supervised&Self-Supervised Domain Adaptation
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Results
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