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Training Data

Trackl & Track2: Only use VoxCeleb2 dev
dataset (1,092,009 utterances and 5,994
speakers)

Development Data

® \/oxCeleb1-O
® \/oxCelebl-E
® \/oxCelebl-H
® \/oxSRC22-dev

Augmentation

® Offline speaker augmentation strategy with 3-fold speed?
(0.9,1.0,1.1; 17,982 speakers total)

® Online Kaldi-style augmentation: MUSAN noises, music,

and babble and reverberation from the Room Impulse
Response and Noise Database (RIR)

Features

® Fbank with {96, 104, 112, 120} for trackl.
® Raw waveforms for fine-tuning models in track 2.

® No additional voice activity detection (VAD).

1. H. Yamamoto, K. A. Lee, K. Okabe, and T. Koshinaka, “Speaker Augmentation and Bandwidth Extension for Deep Speaker Embedding,” in Proc. Interspeech, 2019, pp. 406—410.
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Figure 2: Base ResNet architecture.

ResNet variants

Name Description

M1 Changing input feature dimension

M2 Changing model depths

M3 Changing kernel sizes

M4 Using attention mechanisms [[17, [16]

M5 Using other downsampling operations [18]

Table 1: Strategies for modifving ResNet.

Name MI M2 M3 M4 M5
R1 %6 3x6x20x3 X VX
R2 112 3x5x14ax3 X v X
R3 120 3x6x14ax3 X v X
R4 104 3x5x16x3 X V V/
R5 104 3x4x16x3 9 v
R6 9% 3x5x16x3 9 7/
Table 2: ResNet variants for Track 1.

We modified the ResNet architecture with
one or more of the strategies listed in Table 1

We only applied M3 and M4 to the first two
stages of the backbone due to memory limits

For M4, we used channel-wise and
frequency-wise squeeze-excitation in to the
residual connection, simultaneously. It’s
worth mentioning that we additionally
introduced bias items to the input which also
depend on the input like the weights items

For M5, we altered the downsampling
operation at the beginning of each stage
from a 2-stride 2 X2 convolution witha 2 X
2 average pooling operation.



SMHA and SMHAS

® \\e propose a shuffled multi-head attention (SMHA) pooling method.
SMHA(z) = MHA (CAT(I,. SHUFFLE(I)))

Where SHUFFLE is channel shuffle2, CAT is the concatenation
operation
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® \\e also propose a variant of SMHA which name is shuffled
multi-head attention with statistics (SMHAS) , where each
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Channel shuffle?

2. X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural network for mobile devices,” in IEEE/CVF CVPR, 2018, pp. 6848-6856.



® The models for Track 2 consisted of the models for Track 1

® Three fine-tuned pre-trained models

® The downstream model was ECAPA-TDNN?3

Name Upstream model Pooling layer

Pl WavLM-L SMHA
P2 XLSR-300M STATS
P3 XLSR-1B STATS

Table 3: Fine-tuned pretrained models.

3. B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA_x0002 TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification,” in

Proc. Interspeech, 2020, pp. 3830-3834.
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Two-stage training procedure

stage-1:

» Use short utterances (2 or 2.24s)

« AM-Softmax with subcenters and inter-topK penalties* (subcenter number=3, margin=0.2, scale=35, inter-topK neighbor
size=5, and inter-topK penalty=0.06.

stage-2 (LMF#°):

* removing the speaker augmentation

 long utterances (6s)

«  AAM-Softmax with subcenters (subcenter number=3, margin=0.5, scale=35)

Other settings:
3,000 iterations/epoch
« Batch sizes: 384 (stage 1) and 128 (stage 2)
* Optimizer: Adamw
* Lr_scheduler: ReduceLROnNPlateau
« Start learning rates: 3 X 10~#(stage 1) and 4 X 10 (stage 2)

4. M. Zhao, Y. Ma, M. Liu, and M. Xu, “The speakin system for voxceleb speaker recognition challange 2021,” 2021. [Online]. Available: https://arxiv.org/abs/2109.01989
5.J. Thienpondt, B. Desplanques, and K. Demuynck, “The IDLab VoxSRC-20 submission: Large margin fine-tuning and quality aware score calibration in DNN based speaker
verification,” in Proc. ICASSP, 2021.



For P1 and P2

stage-1:

stepl: Freezing the upstream models, train the downstream models, with a start learning rate of 3 X104,

step2: Unfreezing the upstream models and freezing the downstream models, train the upstream models, with a start
learning rate of 4107,

step3: Unfreezing the whole model parameters, train the entire models, with a start learning rate of 4 X 107>.

stage-2 (LMF):

we trained the entire models with a start learning rate of 2 X107,



For P3: Due to the hardware memory limits, we trained only its self attention weights and the downstream model,
alternatively.

stage-1:

stepl: Freezing the upstream model, train the downstream model, with a start learning rate of 3 X104

step2: Train the self attention weights (in the upstream model) and the downstream model alternatively for two cycles:
step2.1 Freezing the model parameters except the self attention parts, train the self attention weights with a start
learning rate of 4 X 10>
step2.2 Freezing the upstream model, train the downstream model with a start learning rate of 31074

stage-2 (LMF):
The training steps in Stage-2 were also carried out similarly, training the self attention weights and the downstream model
alternatively, except that the start learning rates were all set to 2 X 107>,



® Cosine similarity score was used

® AS-Norm: top 300 imposter scores were used

® QMF45: cosine score, as-norm score, duration
VoxCeleb1-H trials was used for calibration

® [usion: linear weighted combination where weights were picked manually
Trackl: R1—R6 were setto 1
Track2: 1s for R1--R6
1s for R1--R6 and P1--P2, 2 for P3

4. M. Zhao, Y. Ma, M. Liu, and M. Xu, “The speakin system for voxceleb speaker recognition challange 2021,” 2021. [Online]. Available: https://arxiv.org/abs/2109.01989
5.J. Thienpondt, B. Desplanques, and K. Demuynck, “The IDLab VoxSRC-20 submission: Large margin fine-tuning and quality_x0002_aware score calibration in DNN based speaker
verification,” in Proc. ICASSP, 2021.



Table 4: Single system evaluation results.

VoxCeleb1-O VoxCelebl-E VoxCeleb1-H VoxSR(C22-dev VoxSRC22-test

System #Params

EER(%) DCFyos EER(%) DCFyos EER(%) DCFyos EER(%) DCFoos EER(%) DCFys
R1 51.9M 0.3510  0.0220  0.6077  0.0321 09866  0.0545 1.5691 0.1110 1.812 0.1122
R2 46.7TM 0.3776  0.0244  0.5860 0.0318 0.9131 0.0521 1.5350  0.1109 1.812 0.1104
R3 48.1M 0.3616  0.0241 0.6205 0.0333 09687  0.0560 1.5556  0.1123 - -
R4 47.9M 0.3457  0.0299  0.5739 0.0312  0.9031 0.0511 1.5186  0.1070 - -
R5 47.9M 0.3829  0.0271 0.5788  0.0321 0.8944  0.0499 1.5002  0.1071 - -
R6 47.1M 0.3297  0.0272  0.5771 0.0315 09012  0.0512 1.5099  0.1072 - -
P1 336M 0.3615  0.0327  0.4705 0.0278 0.9578  0.0582 1.4591 0.1000 - -
P2 337M 0.5797  0.0523  0.4977 0.0296 0.9045 0.0539 1.4140  0.0899 1.648 0.1150
P3 086M 0.5159  0.0434  0.4525 0.0286  0.8759  0.0542 1.4163  0.0962 1.572 0.102
Fusion
trackl RI1-R6 0.2393  0.0209 0.4974  0.0266 0.8160  0.0452 1.3598  0.0977 1.401 0.090
track2 R1-P3 0.2021 0.0153  0.3481 0.0286  0.6262  0.0354 1.0468  0.0760 1.119 0.072
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