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 DEV402
 Voxconverse 2020 dev set + first 186 recordings of voxconverse 2020 test set

 VAL46
 Last 46 recordings of voxconverse 2020 test set

Mixed training set
 AMI, AISHELL-4, DIHARD I & II, CALLHOME

Other
 Voxceleb1&2, MUSAN, RIRs

 We follow VoxSRC21 winner (Team DKU-DukeECE-Lenovo)

1. Dataset
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2. System Overview
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 Enhance Voxconverse set

 Pre-processing with pretrained speech enhancement model

• FullSubNet[1]

– Trained with DNS Challenge (INTERSPEECH 2020) dataset

2.1 Speech Enhancement

Original sample Enhanced sample

Figure 1. Spectrogram of original / enhanced 
voxconverse sample Figure 2. Speech Enhancement 

processing
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1. ResNet+LSTM

 Almost same as [2]

 Front-end: ResNetSE34[3]+ Statistical pooling (𝑆 = {1, 2})

 Trained on the mixed training set and fine-tuned on enhanced DEV402, augmented by      

MUSAN and RIRs.

2. SincNet+LSTM (Pyannote 2.0)[4][5]

 It transferred from pre-trained using DEV402 without speech enhancement

2.2 Voice Activity Detection (VAD)
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Fusion

 Ensemble by averaging the posterior value from the ResNet+LSTM and SincNet+LSTM model

2.2 Voice Activity Detection (VAD)

Model FA [%] Miss [%] Acc [%] F1 [%]

1. ResNet (S=1) 2.03 1.61 96.34 97.94

2. ResNet (S=2) 2.39 1.47 96.14 97.82

3. SincNet+LSTM 2.23 1.47 96.30 97.92

Fusion (1+2) 2.16 1.54 96.31 97.92

Fusion (1+2+3) 2.08 1.51 96.41 97.98

Table 1. Comparison of the false alarm (FA), miss detection (Miss), accuracy (Acc) 
and F1 score of three different VAD models and their fusions on VAL46
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2.3 Speaker Embedding Extraction

Model: MFA-Conformer[6]

Training set: Voxceleb 1&2

Input: Multi-scale input in each mini-batch[7]

Augmentation: MUSAN noise or RIR, SpecAug

Evaluation: Voxceleb1 test set

Pooling Multi-scale Input EER(%)

MFA-Conformer ASP 2.0 sec 0.697

MFA-Conformer-MS ASP [1.0, 2.0, 3.0] sec 0.867

Table 2. Our speaker embedding model results 
on VoxCeleb1 test set

Ground TruthMFA-Conformer-MS

Figure 3. Our Speaker Embedding Extraction 
Cosine Similarity Score matrix
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2.4 Scoring + Clustering

 Scoring PLDA model

 PLDA model is interpolated from VoxCeleb assigned a weight of 0.9 and DEV402 assigned 

a weight of 0.1

AHC with PLDA for initial assignment

 Short cluster identified using a duration threshold[8]

• Merged into the closest long cluster or treated as a new cluster by SV threshold (=0.5)

 Higher SV threshold value caused slight underclustering

 VB-HMM Clustering

 The parameters of VB-HMM[9] were tuned on VAL46 on each time-scale segments
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2.5 Overlapped Speech Detection (OSD)

2. SincNet+LSTM

 It transfered from pre-trained using DEV402

Fusion

 Ensemble by averaging the posterior value

 Threshold was intentionally set so that the precision 
became high

Model Prec. [%] F1 [%]

1. ResNet+LSTM (S=1) 68.55 68.22

2. ResNet+LSTM (S=2) 67.55 67.40

3. SincNet+LSTM 68.83 66.79

Fusion (1+2) 83.94 56.99

Fusion (1+2+3) 88.81 52.45

Table 3. Comparison of precision (Prec.) and 
F1 score of different OVD models on VAL46

1. ResNet+LSTM

 Almost same as ResNst+LSTM VAD system

Weighted Cross Entropy (WCE) Loss to deal with imbalanced dataset



10

 With Dover-Lap

 Significantly reduce DER

3. Result

System
Time-scale

(Segment / hop length) 
Speech 

Enhancement

VAL46 VoxSRC22 test set

DER[%] JER[%] DER[%] JER[%]

1 1s / 0.75s No 4.41 27.47 - -

2 2s / 1s No 3.97 27.45 - -

3 3s / 1.5s No 4.02 26.92 - -

4 2s / 0.25s Yes 4.14 27.75 - -

5 Fusion (1+2+3) 3.66 26.63 - -

6 Fusion (1+2+3+4) 3.56 27.63 5.12 30.815

Table 4. Performance comparison of our different versions of 
speaker diarization systems
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