The DKU-DukeECE Diarization System for VoxSRC 2022

Weiqing Wang², Xiaoyi Qin¹, Ming Cheng¹, Yucong Zhang¹, Kangyue Wang¹, Ming Li^{1,2}

 1 Data Science Research Center, Duke Kunshan University, Kunshan, China

² Department of Electrical and Computer Engineering, Duke University, Durham, USA

- Voice activity detection (VAD)
- Speaker embedding extraction
- Clustering-based method
 - Cosine + Agglomerative Hierarchical Clustering (AHC)
 - LSTM-based similarity measurement + Spectral Clustering (SC)
- Overlap speech detection

- Voice activity detection (VAD)
- Speaker embedding extraction
- Clustering-based method
 - Cosine + Agglomerative Hierarchical Clustering (AHC)
 - LSTM-based similarity measurement + Spectral Clustering (SC)
- Overlap Speech Detection (OSD)

Voice Activity Detection

- Model 1: ResNet34 + statistical pooling + transformer enc + linear
- Model 2: ResNet50 + convolution subsample + conformer enc + transformer dec
- Model 3: Pretrained *pyannote 2.0*¹.
- Model 4: Kaldi² ASR

Table 1: False alarm (FA), miss detection (MISS) and accuracy of the VAD model on Voxconverse test set

#Model	FA [%]	MISS [%]	ERROR [%]
1	2.94	1.33	4.27
2	2.70	1.77	4.47
3	2.25	2.10	4.35
4	0.81	11.87	12.68
Fusion	2.60	1.37	3.97

¹https://github.com/pyannote/pyannote-audio/tree/develop.

²https://kaldi-asr.org/models/m13.

- Voice activity detection (VAD)
- Speaker embedding extraction
- Clustering-based method
 - Cosine + Agglomerative Hierarchical Clustering (AHC)
 - LSTM-based similarity measurement + Spectral Clustering (SC)
- Overlap Speech Detection (OSD)

Speaker Embedding Extraction

- SimAM-ResNet 34^3 + attentive statistic pooling + Linear + ArcFace
- Trained on Voxceleb2 dev set.
- Finetuned on VoxConverse dev set with pseudo labels.

 Table 2: The performance of speaker embedding system.

Model	Vox	-0	VoxSRC22 task4val		
Wodel	EER[%]	mDCF	EER[%]	mDCF	
SimAM-ResNet	0.726	0.036	5.84	0.220	
+ fine-tune	-	-	5.08	0.335	
	_				

³X. Qin, N. Li, C. Weng, D. Su, and M. Li, Simple attention module based speaker verification with iterative noisy label detection, in ICASSP 2022.

- Voice activity detection (VAD)
- Speaker embedding extraction
- Clustering-based method
 - Cosine + Agglomerative Hierarchical Clustering (AHC)
 - LSTM-based similarity measurement + Spectral Clustering (SC)
- Overlap Speech Detection (OSD)

Clustering-based Method: AHC

- Similar to Microsoft system⁴ in VoxSRC 2020 without speech separation.
- AHC for segmentation:
 - Uniformly segment speech with a length of 1.28s and shift of 0.32s
 - Iteratively merge two closest consecutive segments with the largest cosine similarity until the preset threshold is reached
- AHC for clustering:
 - Perform a plain AHC on the segments with a relatively high threshold to get the clusters with high confidence
 - Split clusters into "long clusters" and "short clusters" by the total duration in each cluster
 - Assign each short cluster to the closest long cluster, and some short clusters are treated as new speakers if not matching any long clusters.

⁴X. Xiao, N. Kanda, Z. Chen, T. Zhou, T. Yoshioka, S. Chen, Y. Zhao, G. Liu, Y. Wu, J. Wu et al.,

[&]quot;Microsoft speaker diariza-tion system for the voxceleb speaker recognition challenge 2020, " in ICASSP, 2021.

- BiLSTM + Linear + Sigmoid
- Uniformly segmented speech with a length of 1.28s and shift of 0.64s.
- Trained on the mixed training set, fine-tuned on voxconverse dev set, and validated on voxconverse test set
- After obtaining the affinity matrix S, perform spectral clustering on it to get the diarization output

$$\mathbf{S}_{i} = [\mathbf{S}_{i,1}, \mathbf{S}_{i,2}, ..., \mathbf{S}_{i,n}] = f(\begin{bmatrix} \mathbf{x}_{i} \\ \mathbf{x}_{1} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{i} \\ \mathbf{x}_{2} \end{bmatrix}, ..., \begin{bmatrix} \mathbf{x}_{i} \\ \mathbf{x}_{n} \end{bmatrix}),$$
(1)

⁵Q. Lin, R. Yin, M. Li, H. Bredin, and C. Barras, "LSTM Based Similarity Measurement with Spectral Clustering for Speaker Diarization, " in INTERSPEECH, 2019.

- Voice activity detection (VAD)
- Speaker embedding extraction
- Clustering-based method
 - Cosine + Agglomerative Hierarchical Clustering (AHC)
 - LSTM-based similarity measurement + Spectral Clustering (SC)
- Overlap Speech Detection (OSD)

- Plain overlap detection
 - Model architecture is the same as VAD model 1.
- Target-speaker Voice Activity Detection
 - Training
 - Inference

TS-VAD

TS-VAD

- Training
 - Initialize the ResNet34 with the parameters from pre-trained speaker embedding model.
 - Pre-trained on Simulated Librispeech with front-end frozen and then unfrozen.
 - Finetuned on voxconverse dev set.
 - Validated on voxconverse test set.
 - Data augmentation is performed with MUSAN and RIRs.
- Inference
 - Fully assigning:
 - The TS-VAD output is the final results.
 - Keep the AHC results of speakers with short speech.
 - Partially assigning:
 - $\bullet\,$ Only replace the overlap regions detected by TS-VAD.

Table 3: The performance of different speaker diarization systems in terms of DER (%) and JER (%).

Model	Test (Oracle VAD)		Test (System VAD)		VoxSRC-22 Test	
Woder	DER[%]	JER[%]	DER[%]	JER[%]	DER[%]	JER[%]
Baseline	-	-	-	-	19.60	41.43
AHC	3.36	21.67	5.35	27.99	-	-
+ OD	3.03	21.43	5.02	27.72	-	-
+ TS-VAD (fully assigned)	3.60	22.21	5.61	28.08	-	-
+ TS-VAD (partially assigned)	2.96	21.77	4.86	27.69	4.85	28.05
LSTM-SC	4.91	32.74	6.36	34.82	-	-
+ OD	4.39	32.02	6.04	34.53	-	-
+ TS-VAD (fully assigned)	4.12	31.70	5.68	33.92	-	-
+ TS-VAD (partially assigned)	4.31	32.14	5.85	34.30	-	-
Fusion	3.09	23.14	4.94	28.79	4.74	27.84

Table 4: The performance of different speaker diarization systems in terms of DER (%) and JER (%).

Model	Test (Oracle VAD)		Test (System VAD)		VoxSRC-22 Test	
Woder	DER[%]	JER[%]	DER[%]	JER[%]	DER[%]	JER[%]
Baseline	-	-	-	-	19.60	41.43
AHC	3.36	21.67	5.35	27.99	-	-
+ <i>OD</i>	3.03	21.43	5.02	27.72	-	-
+ TS-VAD (fully assigned)	3.60	22.21	5.61	28.08	-	-
+ TS-VAD (partially assigned)	2.96	21.77	4.86	27.69	4.85	28.05
LSTM-SC	4.91	32.74	6.36	34.82	-	-
+ OD	4.39	32.02	6.04	34.53	-	-
+ TS-VAD (fully assigned)	4.12	31.70	5.68	33.92	-	-
+ TS-VAD (partially assigned)	4.31	32.14	5.85	34.30	-	-
Fusion	3.09	23.14	4.94	28.79	4.74	27.84

- DER reduction compared with last year:
 - VAD: about 0.3%
 - AHC with better embedding: about 0.2%
 - TS-VAD: about 0.1%
- Fusion:
 - The most difficult part to be tuned.
 - DER mismatch between voxconverse test set and VoxSRC-22 test set.