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Abstract
This report describes our submission to track1 and track3 for
VoxCeleb Speaker Recognition Challenge 2022(VoxSRC2022).
Our best system achieves minDCF 0.1397 and EER 2.414 in
track1, minDCF 0.388 and EER 7.030 in track3.
Index Terms: speaker recognition, VoxSRC2022, domain
adaptation, clustering algorithm, label correction.

1. System Description for Track1
1.1. Data

Training Data: We use VoxCeleb2-dev(vox2dev) [1] as train-
ing data, which consists of 1092009 utterances from 5994
speakers. To augment data, we first use the SoX speed func-
tion with speeds 0.9 and 1.1 to generate extra twice speak-
ers [2]. In total, there are 17982 speakers and 3276027 utter-
ances. Then, we use MUSAN [3] and RIRs noises [4] to per-
form online data augmentation. Similar to SpeakIn systems for
VoxSRC2021 [5], we used a chain augment pipeline to generate
samples:

• MUSAN noise with probability 0.2

• MUSAN music with probability 0.2

• MUSAN speech with probability 0.2

• RIRs noises with probability 0.6

SpeechBrain [6] was used to build the pipeline.
Developing Data: We use official validation sets [1, 7–9]

to evaluate our models: Vox1-O, Vox1-E, Vox1-H, Vox20-dev,
Vox21-dev and Vox22-dev.

Features: We extract 80-dimensional log-Mel Filter Banks
(Fbank) as input features without any voice activity detec-
tion(VAD). The frame length is 25ms and the frame shift is
10ms. Cepstral mean normalization(CMN) is applied. Our im-
plementation was based on TorchAudio [10].

1.2. Model Structures

Two main stream of current most popular model structures was
used for the challenge: 1D-convolution-based ECAPA-TDNN
[11] and its variants, 2D-convolution-based ResNet [12] series
and RepVGG [13].

ECAPA-TDNN: We trained ECAPA-TDNN large with
1024 channels and its two variants, ECAPA-TDNN-X3(EX3)
and ECAPA-TDNN-X4(EX4). We used SpeechBrain imple-
mentation with 1024 channels. To further boost its perfor-
mance, we made it deeper and added branches in res2block to
enhance representational ability. For EX3, we combine two se-
res2block as one basic block. For EX4, we added one more

*equal contribution

basic block, and meanwhile, to restrict the receptive field, we
did not use dilation in the first few blocks. Besides, we used
group convolution to preserve the original feature map.

ResNet/SE-ResNet: ResNet is one of the most popular
model structures currently. Here we used standard ResNet34
with 64 channels. Squeeze excitation module [14] uses an at-
tention mechanism to re-weight feature map channels. Besides,
we use a modified version of ResNet as described in [15] except
that the SE module was added only in the first two blocks. We
trained SE-ResNet101 with 32 channels and 64 channels.

HS-ResNet & Res2Net In order to model multi-scale fea-
tures, we used Res2Net [16] and its variants hs-resnet [17] with
dssa module. Both models are 50 layers deep, scale 8 and width
14 in Res2Net and scale 8 and width 6 in HS-ResNet.

RepVGG RepVGG use 3 branches of convolution and
batch normalization when training and re-parameterize them as
one for inference. Branch greatly boost capability to model
multi-level features. We use the official version with configu-
ration b1.

1.3. Pooling

Deep neural network-based systems use a pooling layer to ag-
gregate frame-level features into segment-level embeddings.
We used two pooling methods: attentive statistics pooling(ASP)
[18] and channel-wise correlation pooling(CWC) [19].

1.4. Loss Function

Margin-based loss functions have greatly improved system per-
formance. In this challenge, we adopted circle loss [20]. More-
over, subcenter [21] and intertopk [22] are two plugin methods
that could further improve the discrimination of embeddings.
Circle loss is formulated as follows:

Lcircle = −log
es·(m
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where m is the margin and s is the scale factor.

1.5. Training Protocol

We trained models with a two-stage protocol. All experiments
were based on the PyTorch [23].

Adam optimizer with weight decay 5e-5 was used in the
first stage. Cycle learning rate scheduler [24] was adopted,
where the minimum learning rate is 1e-8 and the maximum is
1e-3, we trained 2 cycles with one cycle of 100k steps. The
batch size was 1024 and the segment duration was 2s. Margin
and scale were set to 0.35 and 60 for circle loss, respectively.
We used subcenter k=3 and intertopk k=5, m=0.1.

The second stage was large margin fine-tuning(LMF), we
expanded segment duration to 6s, only removed intertopk from



Table 1: Res2Net50’s Performance on VoxCeleb Official Evaluation Sets

Stage Vox1O Vox1E Vox1H Vox20-dev Vox21-dev Vox22-dev Vox22-eval

EER DCF0.05 EER DCF0.05 EER DCF0.05 EER DCF0.05 EER DCF0.05 EER DCF0.05 EER DCF0.05

base 0.670 0.0483
+LMF 0.516 0.0303 0.656 0.0386 1.172 0.0670 1.993 0.1024 1.942 0.1091 1.751 0.0977 3.126 0.1715
++AS-norm 0.532 0.0298 0.626 0.0370 1.123 0.0644 1.922 0.0980 1.891 0.1047 1.726 0.0982 3.024 0.1662
+++QMF 0.473 0.0283 0.587 0.0350 1.059 0.0610 1.792 0.0972 1.795 0.1067 1.657 0.0972 2.983 0.158

Table 2: Experiment results on Vox22-dev and Vox22-eval

Index Backbone Pooling VoxSRC2022-dev VoxSRC2022-eval

EER minDCF0.05 EER minDCF0.05

1 Res2Net50-32 ASP 1.657 0.0972 2.983 0.158
2 ECAPA-TDNN-large ASP 2.402 0.1585 - -
3 ECAPA-TDNN-X3 ASP 1.930 0.1245 - -
4 ECAPA-TDNN-X4 ASP 1.912 0.1179 - -
5 ResNet34-64 ASP 2.112 0.1297 - -
6 ResNetSE101-32 CWC 1.782 0.1091 - -
7 ResNetSE101-64 CWC 2.145 0.1437 - -
8 Res2Net50-64 ASP 2.021 0.1356 - -
9 HS-ResNet-DSSA ASP 2.082 0.1279 - -

10 RepVGG-B1 ASP 1.725 0.1007 - -

fusion

fusion1 1+3+4+6+8+9+10 1.484 0.0873 2.585 0.1408
fusion2 1+2+3+4+5+6+7+8+9+10 1.495 0.0874 2.538 0.1483
fusion3 1+2+3+4+5+6+7+8+9+10+LR 1.382 0.0825 2.414 0.1397

loss function, and increased weight decay from 5e-5 to 4e-4.
We used a constant learning rate of 2e-5 for 10k steps.

1.6. Back-end

After LMF, cosine distance was used for 4s × 10 scoring.
Evenly cut 10 4-second long segments from utterances, the
mean of score matrix with the size of R10×10 served as the score
of a trial. Then, we used adaptive score normalization(AS-
norm) [25] and quality measure functions(QMF) [26] to cali-
brate the scores. For AS-norm, speaker-wise averaged embed-
dings from vox2dev, leading to 5994 cohort speakers with top
400 imposter scores were used. By the way, we removed im-
poster variance. For QMF, we followed IDLAB’s method to
generate 30k trials from vox2dev. Then we trained the logistic
regression(LR) model to calibrate the AS-normed score. In the
end, another LR model was used to combine all of the calibrated
models to get the final fused score. While the generated trials
could not perfectly fit the evaluation distribution, we manually
tuned the model weights based on Vox22-dev trials.

1.7. Results

1.7.1. Ablation Study

Res2Net50 is our best single system, table 1 shows its per-
formance on all of the evaluation sets at different stages.
Equal Error Rate(EER) and minimum Decision Cost Func-
tion(minDCF) with CFA = 1, CM = 1, Ptarget = 0.05
was reported. After the first stage training, model achieves
EER = 0.67%,minDCF = 0.0483 on Vox1O. EER im-
proved from 0.67% to 0.516% and minDCF improved from
0.0483 to 0.0303 after LMF. AS-norm further decreased EER

to 0.532 and minDCF to 0.0298. QMF finally push the limit of
the model to EER=0.473% and minDCF=0.0283 . In total, with
these stacked methods, the performance got relative improve-
ment of 29.4% and 41.4% on EER and minDCF, respectively.

1.7.2. System Performance

Table 2 shows our 10 subsystems performance on Vox22-dev
and Vox22-eval. We found that for TDNN-based model, the
larger model is, the better performance we got. It was half true
for ResNet-series models, as we found simply double the chan-
nels cannot bring improvement.

We fused ResNet-series models firstly with equal weights,
got EER=2.585, minDCF=0.1408. Adding TDNN-series mod-
els only got improvement on EER but degradation on minDCF.
Then, we introduced LR model to train on generated QMF
set and tuned the weights based on model coefficients, finally
achieves EER=2.414 and minDCF=0.1397.

2. Semi-Supervised Domain Adaptation
Semi-supervised speaker recognition attempts to automatically
exploit a large amount of target or source unlabeled data in ad-
dition to a large amount of source or target labeled data to im-
prove performance. There are three general goals, one is to ob-
tain better performance on the target domain data, the other is
to improve the performance on all domains, that is, to improve
the domain robustness, and the third is to achieve better perfor-
mance on the source domain data. The goal of this competition
is to achieve the performance of the target domain.

We attempt two frameworks, one is pseudo labeling, and
the other is self-supervised learning. The pseudo-label solution



contains five stages: 1 source label data model training, 2 em-
beddings domain adaptation, 3 pseudo-label generation, 4 Su-
pervised training on target domain data with pseudo-labels and
source domain label data, 5 pseudo label correction and re-train.

2.1. Pre-processing

Because of the lack of filtering when constructing the CN-
Celeb2 [27, 28], it contains much noisy audio. One of the most
intuitive manifestations is that there is much-repeated audio in
CN-Celeb2, and some are given different labels. We directly
used md5sum to de-duplicate the speech and the number of au-
dio decreased from 455,946 to 409,628.

2.2. Base Model Training

To obtain high confidence edges by using the voting strategy, it
is beneficial to select models with as much variance as possible,
from the model structure to the training Protocol. We selected
the following five models: (1) SE-ResNet34 with 32 channel;
(2)ECAPA-TDNN with 1024 channel; (3) Conformer-MFA with
256 hidden dim [29]; (4) SE-ResNet101 with 32 channel; (5)
Cot-Net [30] with 32 channel; Others settings are shown in Ta-
ble 3.

2.3. domain adaptation

During the evaluation process, domain adaptation is necessary
due to a large domain mismatch. An important manifestation
of domain mismatch on embedding is the difference between
the mean and variance. Thus, the simplest approach is to align
the centers of the different domains directly, and experiments
show significant improvements. Further, aligning the variance
can also achieve improvements in theory. We attempt to ap-
ply CORAL [31], CORAL+ [32] and CORAL++ [33] into em-
beddings of target domain directly and use cosine similarity for
scoring. However, there is no performance improvement un-
less we use back-ends, LDA, and PLDA [34, 35]. Due to time
constraints and inconvenient operations, we do not do this work
systematically and will do these in the future.

2.4. cluster

Because AHC is computationally infeasible and k-means de-
pend on the estimate of k, we propose a novel cluster al-
gorithm, a progressive sub-graph clustering algorithm based
on two Gaussian fitting and multi-model voting, denoted as
GMVPG clustering. The key points of this algorithm are as
follows: First, finding high-confidence positive trials, that is,
edges, using a multi-model voting strategy based on the KNN
affinity graph. Secondly, utilizing connected sub-graphs to ob-
tain pseudo labels Then, using iterative top-k information to
gradually merge sub-classes to prevent super-classes. Finally,
two Gaussian distributions are introduced to fit the intra-class
score distribution to further check for high-confidence edges.
The detailed algorithm is shown as follows:

2.5. Supervised training and fine-tune

2.5.1. Training stage1

The training data for track3 contains VoxCeleb2, the unlabeled
target domain dataset from Cnceleb2, and the small amount of
labeled set. Speed perturbation augmentation is used in all data,
and other augmentations are the same as track 1. In the first
training stage for track 3, we explore two training strategies,
one is to train the model from scratch, and the other is to utilize

models from Track1 as the pre-trained model. For the latter, it
is necessary to make the new model be converged before start-
ing training, freezing the extractor and training the classification
layer first is an effective approach. In addition, we also explore
two different training protocols, one is Adam optimizer with cy-
cle learning rate scheduler, as shown in Section 1, and the other
is SGD optimizer with ReduceLROnPlateau scheduler.

Algorithm 1: GMVPG clustering algorithm
Input : Embeddings of target domain audio data

from multi models after domain adaptation
Xt, t = 0, 1, ..., T ;

Output: pseudo label of target domain audio data D,
here, Ans = (di, yi), i = 0, 1, ...,M, yi =
−1, 0, 1, ..., N ;

1 Collect information about KNN affinity graph for D, K
is set to 500; sim(xt

i, k) represents the top kst
similarity of xt

i;
2 filter out partial audio di, if ∃t, sim(xt

i,K) > thhigh;
3 Construct initial KNN affinity graph for D, initial k is

set to 10;
4 preserve edges between di and dj , eij if

sims(xt
i, x

t
j) >= sim(xt

i, k) ∀t, other edges are
deleted;

5 Utts are deleted if no edges are connected. For
convenience, we denote Ek = eij for all preserved
edges and uttk = di for all preserved utts when k,
respectively;

6 Obtain initial labels by searching connected sub-graph
(SCSG), G(k), one sub-graph means one class;

7 repeat
8 Eadd = Ek+5 − Ek, Uadd = Uk+5 − Uk;
9 Split Eadd to Eold.old, Enew.old and Enew.new

according to whether utt is in Uk;
10 Generate temp pseudo labels tmpGnew(k+ 5) for

Uadd based on Enew.new only;
11 Combine class for Uk based on Eold.old only;

tmpGold(k + 5) =
subspkCombine(Eold.old, G(k));

12 Process the relationship between Uadd and Uk;
G(k + 5) =
CbNewOld(tmpGnew(k+5), G(k), Enew.old);

13 k = k + 5;
14 until k=50;
15 Throw out classes with fewer than 10 utts;

2.5.2. Training stage2

In this stage, we only use CN-Celeb dataset without speed per-
turbation to finetune all systems. But, the VoxCeleb weights of
the classification layer are preserved to prevent overfitting. Two
fine-tuning training protocols are utilized, one is SGD with a
2e-5 learning rate, and the other is Adam with a 2e-5 learning
rate. Others are the same as Track 1.

2.6. pseudo label correction

Since the GMVPG method brings some mislabeled and noisy
samples, it is important to correct labels after the initial model
training. The key points of this algorithm are as follows:

i. Split audio into three types according to its similarity
to centers, high/median/low-confidence; ii. Stas the correlation



between each class based on audio with median-confidence iii.
Integrate the results from multi models to correct the labels.

The detailed algorithm is shown as follows: 1. calculate
the similarity of all audio in CN-Celeb to the two most simi-
lar class centers, denoted as simtop1

i and simtop2
i , the labels

of most similar class centers are denoted as ytop1
i and ytop2

i ; 2.
Split audios according to simtop1

i and simtop2
i : simtop1

i > 0.5

and simtop2
i < 0.4 high-confidence; simtop1

i > 0.5 and
simtop2

i > 0.4 median-confidence; simtop1
i < 0.5 low-

confidence; 3. Use audio with median-confidence to find la-
bels of samples, which comes from the same speaker but are
given labels of multiple speakers by the GMVPG clustering al-
gorithm, 4. Two classes are merged into one when multiple
models all show that they need to be merged. 5. Filter out audio
that is low confidence, other audio is labeled by using predicted
posterior probability.

Algorithm 2: Functions of GMVPG clustering

1 Function CheckCombine(U):
2 Calculate similarity between all d, for d ∈ U ;
3 Using two-Gaussian distribution to fit the scores,

µ1, σ1, w1, µ2, σ2, w2 represent the parameters
of max and min Gaussian;

4 if µ2 > thnm OR w1 >= 0.5 OR
(µ1 − σ1) <= (µ2 + σ2) + ϵ then

5 return Yes
6 else
7 return No
8 end
9 End Function

10 Function subspkCombine(E,G):
11 for each eij ∈ E do
12 tmpD = Gi2utts+Gj2utts;
13 if CheckCombine(tmpD) == No then
14 delete eij from E
15 end
16 end
17 SCSG based on E to get G;
18 return G
19 End Function
20 Function CbNewOld(Gnew, Gold, Enew.old):
21 Uold = Gold.nodes;
22 Unew = Gnew.nodes;
23 for each ui ∈ Unew do
24 utt2subgraphi =

{uold
j if Enew.old(ui, u

old
j )} for

uold
j ∈ Uold ;

25 Ui = utt2subgraphi.nodes;
26 if CheckCombine(Ui) == No then
27 delete ui from Gnew and Enew.old

28 end
29 end
30 SCSG based on {Gnew, Enew.old, Gold} to get G;
31 return G
32 End Function

2.7. Score calibration

Score calibration has been an essential part in recent VoxS-
RCs. However, unlike track1&2, track3 provided only 50 la-
beled speakers. To build a matched developing set as far as

we can, we filtered 70 speakers with 20 segments each from
unlabeled data according to their clustering purity. We gave la-
beled speakers more weight when generating developing trials
as pseudo-label could be wrong. Finally, we got 40000 trials
which is equal to the validation trials. The results show that
our developing set is slightly easier but still brings performance
gain.

2.8. Results

Models shown in Table 3 are used to cluster. Systems in Table 4
are developed for Track3. Results we submitted are shown in
Table 5. After GMVPG clustering algorithm, we obtain 1711
speakers and 348861 utts. After model training and label cor-
rection, we obtain 1760 speakers and 387700 utts.

Table 3: Results of base model before/after adaptation

mdl loss vox2-train
t3-dev-EER
ini adapt

se-resnet34-32 circle clean-fb64-sgd 16.86 14.29
cotnet circle clean-fb64-sgd 16.65 14.55

conformer circle aug-fb80-adam 16.95 14.14
ecapa-large circle aug-fb80-adam 18.02 14.62

se-resnet101-32 circle aug-fb80-adam 14.06 11.90

Table 4: Results of systems for Track3. v0 means pseudo labels
before correction, and v1 means after.

mdl loss train
t3-dev-EER
ini calib

S1 Res2Net50 circle v0-sgd 8.45 8.20
S2 ResNet34 circle v0-sgd 8.61 7.66
S3 ECAPA-X4 circle v0-sgd 9.57 8.81
S4 ECAPA-X4 circle v0-adam 10.47 9.65
S5 ECAPA-X4 circle v1-sgd 8.78 8.42

Table 5: Results of systems that we submitted

mdl mode dev-EER eval-EER

S1 ini 8.45 8.07
S2 ini 8.61 8.64

S1+S2 ini 8.01 7.57
S1+S2+S3+S4 ini 7.87 7.40

S1+S2+S3+S4+S5 calib 6.77 7.03

3. Conclusions
In this paper, we summarized our systems for VoxSRC2022 in
detail. For track1, we explore various strong speaker embed-
ding extractors and some training tricks. For Track3, we explore
some domain adaptation methods firstly. Then, we propose a
novel progressive sub-graph clustering algorithm based on two
Gaussian fitting and multi-model voting to obtain pseudo la-
bels. Thirdly, we explore some fine-tuning tricks to achieve
better performance. Finally, we propose one label correction
algorithm to correct noisy labels. Our Fusion systems achieve
6th and 1st place in Track 1 and 3 respectively.
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