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Abstract
This technical report describes our system for track 1, 2 and 4 of
the VoxCeleb Speaker Recognition Challenge 2022 (VoxSRC-
22). By combining several ResNet variants, our submission
for track 1 attained a minDCF of 0.090 with EER 1.401%.
By further incorporating three fine-tuned pre-trained models,
our submission for track 2 achieved a minDCF of 0.072 with
EER 1.119%. For track 4, our system consisted of voice ac-
tive detection (VAD), speaker embedding extraction, agglomer-
ative hierarchical clustering (AHC) followed by a re-clustering
step based on a Bayesian hidden Markov model and overlapped
speech detection and handling. Our submission for track 4
achieved a diarisation error rate (DER) of 4.86%. The submis-
sions all ranked the 2nd places for the corresponding tracks.
Index Terms: speaker verification, speaker recognition,
speaker diarisation, ResNet, pre-trained models, VoxSRC-22

1. Introduction
The VoxSRC-22 challenge contains two full supervised speaker
verification tracks (track 1 and track 2), and one diarisation
track (track 4), where

track 1 is a closed task, and only VoxCeleb2 [1] dev dataset
can be used for training models;

track 2 and 4 are both open tasks, and any public data except
the challenge test data can be used.

The goal of this challenge is to probe how well current methods
can segment and recognize speakers from speech obtained ’in
the wild’.

For track 1, we trained from scratch six models modified
from the ResNet [2] architecture, using only VoxCeleb2 [1] dev
dataset. For track 2, we additionally fine-tuned three recently
proposed pre-trained models [3, 4], which are all publicly avail-
able, to harness the power of the large-scale pre-trained mod-
els. All the models in track 1 and 2 were trained and cal-
ibrated individually with the same procedure, and then fused
using weighted linear combinations.

For track 4, we built our speaker diarization system by
means of VAD, speaker embedding extraction, clustering, over-
lapped speech detection (OSD) and handling, step by step as
shown in Figure 1.

2. Data preparation and augmentation
2.1. Training data

Track 1&2: For training, we used the VoxCeleb2 dev dataset
which contains 1,092,009 utterances and 5,994 speakers in total.

† Corresponding author.
‡ Main contributor for track 4.
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Figure 1: Diarisation system overview.

Moreover, we employed a speaker augmentation strategy with
3-fold speed augmentation [5, 6, 7] and thus obtained 17,982
speakers. Besides, data augmentation for training was carried
out in an online manner, with the Kaldi-style augmentation [8],
including MUSAN [9] noises, music, and babble and reverber-
ation from the Room Impulse Response and Noise Database
(RIR)[10].

For validation, four development sets were used, in-
cluding VoxCeleb1-O, VoxCeleb1-E, VoxCeleb1-H [11] and
VoxSRC22-dev1.
Track 4: The developement set consisted of the development
set and test set of VoxConverse[12](for convenience, in the fol-
lowing parts, they are referred to as track4-dev1 and track4-
dev2, respectively, and the evaluation set is referred to as track4-
test). The datasets used in this challenge for each model are
described as follows:

• VAD: NIST(LDC2009E100)[13], LibriSpeech[14],
AISHELL-2[15], the noise of track4-dev1 and track4-
dev2 were the mixed training set. We used track4-dev2
for validation.

• AHC: We directly tuned the parameters on track4-dev2.

• Variational Bayes hidden Markov model clustering: We
directly tuned the parameters on track4-dev2.

• OSD: NIST(LDC2009E100), LibriSpeech, AISHELL-2
were used as the mixed training set. We used track4-dev2
for validation.

• Data augmentation: We performed data augmentation
with MUSAN and RIRs corpus.

2.2. Features

Track 1&2: For track 1, we used mean normalized Kaldi-
compliant log Mel-filter bank (FBank) features with energies
with a 25 ms window size and a 10 ms frameshift. The feature
dimensions were chosen from {96, 104, 112, 120} in our exper-
iments. For fine-tuning models in track 2, we directly used the
raw waveform. No additional voice activation detection (VAD)
was used throughout this report.
Track 4: For VAD and OSD, we used mean normalized Kaldi-
compliant 80-dim FBank and 30-dim MFCC features with en-
ergies with a 25 ms window size and a 10 ms frameshift.

1 We used the cleaned trial lists of VoxCeleb1-O, -E and -H.



3. System description for track 1 and 2
3.1. Model architectures: track 1

ResNet variants: The models for track 1 were based on the
ResNet architecture which is depicted in Figure 2, whose base
channels were fixed to 64. Moreover, we only considered the
basic Resnet block used in ResNet34 [2]. We modified the
ResNet architecture with one or more of the strategies listed
in Table 1 to introduce modelling diversity, and the resulting
models are listed in Table 2. In Table 1:

• We only applied M3 and M4 to the first two stages of
the backbone due to memory limits and the suggestions
in [16].

• For M4, we used channel-wise and frequency-wise
squeeze-excitation in [17, 16] to the residual connection,
simultaneously. It’s worth mentioning that we addition-
ally introduced bias items to the input which also depend
on the input like the weights items.

• For M5, we altered the downsampling operation at the
beginning of each stage from a 2-stride 2×2 convolution
with a 2× 2 average pooling operation.

1×H × T (Input)

3 × 3 Convolution

64×H × T

ResNet BasicBlockStage-1: ×n1

initial stride=1

64×H × T

ResNet BasicBlock
×n2

initial stride=2
Stage-2:

128×H/2× T/2

ResNet BasicBlock
×n3

initial stride=2
Stage-3:

256×H/4× T/4

ResNet BasicBlock
×n4

initial stride=2
Stage-4:

512×H/8× T/8

Pooling & FC

512 (Output)

Figure 2: Base ResNet architecture.

Pooling layer: Based on the multi-head attention (MHA)
pooling [19], we propose a shuffled multi-head attention
(SMHA) pooling method. Note that in MHA, for each channel
groups of the input, the forward step works independently with-
out any interaction between each other. However, we believed
it could be better to introduce interaction between the heads,
so we applied the shuffle operation in [20] and carried out the
pooling operation as:

SMHA(x) = MHA
(
CAT

(
x,SHUFFLE(x)

))
(1)

Name Description

M1 Changing input feature dimension
M2 Changing model depths
M3 Changing kernel sizes
M4 Using attention mechanisms [17, 16]
M5 Using other downsampling operations [18]

Table 1: Strategies for modifying ResNet.

Name M1 M2 M3 M4 M5

R1 96 3× 6× 20× 3 % ! %

R2 112 3× 5× 14× 3 % ! %

R3 120 3× 6× 14× 3 % ! %

R4 104 3× 5× 16× 3 % ! !

R5 104 3× 4× 16× 3 9 ! !

R6 96 3× 5× 16× 3 9 ! !

Table 2: ResNet variants for Track 1.

where CAT is the concatenation operation. Additionally, when
calculating the attention weights using MHA in SMHA, we
observed improvements if each head’s statistics vector (its
mean and standard deviation) were also considered. We name
this variant of SMHA as shuffled multi-head attention with
statistics (SMHAS), which is used for the ResNet Variants
throughout this report. In our experiments, all the head num-
bers were fixed to 8.

3.2. Model architectures: track 2

The models for Track 2 consisted of the models for Track 1
(see also Model architectures: track 1) and three fine-tuned
pre-trained models, including WavLM Large (WavLM-L) [4],
Facebook’s Wav2Vec2 XLS-R 300M (XLSR-300M) and 1B
(XLSR-1B) [3]. The hidden states of the pre-trained mod-
els were extracted using S3PRL1, and then normalized, lin-
ear weight combined, and fed to a downstream model similar
to [4], where the downstream model was ECAPA-TDNN [21]
with 1024 base channels and a 512-dimensional output. The re-
sulting models are listed in Table 3, where STATS means the
statistics pooling layer [22].

Name Upstream model Pooling layer

P1 WavLM-L SMHA
P2 XLSR-300M STATS
P3 XLSR-1B STATS

Table 3: Fine-tuned pretrained models.

3.3. Training procedure

A two-stage training procedure like [7, 23] was adopted for
training the models:

Stage-1 Train initial models using short utterances to speedup
the training process, where the short utterances were
randomly cropped from the corresponding original ones

1 https://github.com/s3prl/s3prl

https://github.com/s3prl/s3prl


Table 4: Single system evaluation results.

System
VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H VoxSRC22-dev

EER(%) DCF0.05 EER(%) DCF0.05 EER(%) DCF0.05 EER(%) DCF0.05

R1 0.3510 0.0220 0.6077 0.0321 0.9866 0.0545 1.5691 0.1110
R2 0.3776 0.0244 0.5860 0.0318 0.9131 0.0521 1.5350 0.1109
R3 0.3616 0.0241 0.6205 0.0333 0.9687 0.0560 1.5556 0.1123
R4 0.3457 0.0299 0.5739 0.0312 0.9031 0.0511 1.5186 0.1070
R5 0.3829 0.0271 0.5788 0.0321 0.8944 0.0499 1.5002 0.1071
R6 0.3297 0.0272 0.5771 0.0315 0.9012 0.0512 1.5099 0.1072
F1 0.3615 0.0327 0.4705 0.0278 0.9578 0.0582 1.4591 0.1000
F2 0.5797 0.0523 0.4977 0.0296 0.9045 0.0539 1.4140 0.0899
F3 0.5159 0.0434 0.4525 0.0286 0.8759 0.0542 1.4163 0.0962

Fusion

track1 0.2393 0.0209 0.4974 0.0266 0.8160 0.0452 1.3598 0.0977
track2 0.2021 0.0153 0.3481 0.0286 0.6262 0.0354 1.0468 0.0760

with 2 and 2.24 seconds, respectively for track 1 and
track 2. The loss function used in this stage was AM-
Softmax with subcenters and inter-topK penalties (SC-
ITK-AMSoftmax) [7, 24], with subcenter number=3,
margin=0.2, scale=35, inter-topK neighbor size=6, and
inter-topK penalty=0.06.

Stage-2 Train final models with the large margin fine-tuning
(LMF [23]) technique, removing the speaker augmen-
tation and using longer utterances with 6 seconds to
match the target domain, while for short speech seg-
ments wrap padding were used. The loss function
used here was AAM-Softmax with subcenters (SC-
AAMSoftmax) [25], with subcenter number=3, mar-
gin=0.5, scale=35.

Throughout the training processes, each epoch contained
3,000 iterations, and the batch sizes were set to 384 and 128
when possible1, respectively, for Stage-1 and 2. We used
AdamW (with weight decay 0.0001) as the optimizer, and a Re-
duceLROnPlateau scheduler as the learning rate scheduler (with
updating frequency 3,000, patience 4, and decaying factor 0.4).
For the ResNet variants, the start learning rates were 3× 10−4

and 4×10−5 for Stage 1 and 2, respectively. For fune-tuning the
pre-trained models, the situation was slightly more complicated
and required special treatment due to the huge model sizes, and
the details is described in the following section.

3.4. Fine-tuning pre-trained models

The basic fine-tuning steps are carried out as follows:

• For P1 and P2, we took the following three steps for
model training in Stage-1:

Step-1 Freezing the upstream models, train the down-
stream models, with a start learning rate of 3 ×
10−4.

Step-2 Unfreezing the upstream models and freezing
the downstream models, train the upstream mod-
els, with a start learning rate of 4× 10−5.

1 Gradient accumulation technique was used to catch up when we were
confronted with the hardware memory limits.

Step-3 Unfreezing the whole model parameters, train
the entire models, with a start learning rate of
4× 10−5.

In Stage-2, we trained the entire models with a start
learning rate of 2× 10−5.

• For P3, we were hindered by the hardware memory
limits; consequently, we trained only its self attention
weights and the downstream model, alternatively. The
training steps in Stage-1 are described as follows:

Step-1 Freezing the upstream model, train the down-
stream model, with a start learning rate of 3 ×
10−4.

Step-2 Train the self attention weights (in the upstream
model) and the downstream model alternatively
for two cycles:

Step-2.1 Freezing the model parameters except
the self attention parts, train the self attention
weights with a start learning rate of 4×10−5.

Step-2.2 Freezing the upstream model, train the
downstream model with a start learning rate
of 3× 10−4.

The training steps in Stage-2 were also carried out sim-
ilarly, training the self attention weights and the down-
stream model alternatively, except that the start learning
rates were all set to 2× 10−5.

However, we had observed the tendency of overfit when fine-
tuning the pre-trained models. Therefore, we saved model
checkpoints after each epoch finished, and picked the one that
performed best on the validation set for the final system.

3.5. Scoring procedure

When extracting the speaker embedding vectors, the L2-
normalized 512-dimensional outputs of the last full connected
layer of each model were used. When performing single system
scoring, we computed the cosine similarity score of the speaker
embeddings of each trial, and then used adaptive score nor-
malization (AS-Norm) [26, 27] and quality measure functions
(QMF) [23, 28] for calibration. For building cohorts used in



AS-NORM, we randomly picked at most 30 utterances for each
speaker from the VoxCeleb2 dev dataset without augmentation,
extracted their embeddings, and then averaged them speaker-
wisely; the resulting vectors were used as the cohorts, in which
only top 300 imposter scores were used for score normalization.
The calibration was trained on the VoxCeleb1-H trials using lo-
gistic regression in a similar way to [7, 23].

The final system was a linear weighted combination of the
individual calibrated models. The combination weights were
picked manually: for both tracks, each weight for R1—R6 was
simply set to 1; for track 2, the weights of P1, P2 and P3 were
set to 1, 1 and 2, respectively.

4. System description for track 4
4.1. Overview

The proposed speaker diarisation system is illustrated in Fig-
ure 1. The input audio was first processed by VAD to obtain
valid speech segments. Then speaker embeddings were ex-
tracted with a 1.5s sliding window size with 0.25s step size.
Clustering and OSD were conducted individually. The details
are explained in the following subsections.

4.2. Voice activity detection

We trained two VAD models like [29] except that we used
different acoustic features, including 30-dim MFCC and 80-
dim FBank. In addition, the VAD functionality provided by
pyannote 2.0[30] was also included as a sub-system. We then
adopted a multi-system fusion method as [31], and combined
these three sub-systems with equal weights. Table 5 shows the
false alarm (FA) and miss detection (MISS) on track4-dev2.

Table 5: The false alarm (FA), miss detection (MISS) and accu-
racy of the VAD model.

System FA[%] MISS[%] Accuracy[%]

FBank 3.49 1.49 95.00
MFCC 4.27 0.92 94.80
pyannote 3.22 1.62 95.15
Fusion 3.55 1.06 95.37

4.3. Speaker Embedding

We used model R6 in Table 2 which achieved an EER=0.44%
using cosine similarity on VoxCeleb1-O.

4.4. Clustering

We performed AHC on audio segments, and then performed an
re-clustering step based on the Bayesian hidden Markov model.

4.4.1. Initial Clustering

The speaker embeddings were clustered by means of AHC[32]
with cosine similarity. The AHC clustering threshold was
tuned on track4-dev2, combined with Variational Bayes hidden
Markov model (VB-HMM) diarisation[33].

4.4.2. Re-clustering

We replaced equation (17) (18) in VB-HMM[33] by (2) (3):

Ls = I +
FA

FB

∑
t

γts (2)

ρt = xt = FCEt (3)

where γts is the marginal approximate posterior at frame t for
speaker s; FA = 0.3, FB = 17; FC is a scale parameter; Et is
the L2-normalized speaker embedding at frame t; I is a vector
of 1s.

We also considered using AS-Norm for score calibration.
For building cohorts used in AS-Norm, we randomly picked 2
utterances for each speaker from the VoxCeleb2 dev dataset,
cropped them to 1.5 seconds and extracted their embeddings.
We then replaced the αT

s ρt and Φ terms (23) in [33] by

αT
s ρt =

FAF
2
C

FB
l−1
s

βT
s Et − µs

σs

∑
t

γts (4)

Φ = I (5)

where βs =
∑

t γtsEt∑
t γts

, ls = 1.0 + FA
FB

∑
t γts, and µs and σs

are mean and standard deviation of βs.

Table 6: The DER and JER of the proposed speaker diarization
system on track4-dev2.

System DER[%] JER[%]

VB 4.42 26.43
VB+asnorm 4.29 26.81

4.5. Overlapped speech detection and handling

The overlap detection model, including its training process,
were similar to that of the VAD model. We trained two models
with the same structure and fused with pyannote 2.0. For each
overlapped speech segments, we found the two closest speakers
in time.

5. Experimental results
5.1. Track 1&2

We provide in Table 4 the single system results evaluated on the
validation trial lists. The results in Table 4 show that although
the single system performances are close to each other, the fused
system’s can still achieve a considerable improvement, which
also indicates the effectiveness of utilizing the diversities of the
single systems. On the test trials of this challenge, the fused
system achieved a minDCF of 0.090 and an EER of 1.401%
for track 1, and achieved a minDCF of 0.072 and an EER of
1.119% for track 2, where the testing results were all closed to
the validation results on the VoxSRC22-dev dataset.

5.2. Track 4

The diarisation results of the proposed systems are shown in
Table 6. The system VB+asnorm was our best system. Com-
pared with the system VB, DER was improved by 0.13%, but
the JER was deteriorated by 0.38%. Our best submission on the
evaluation set attained DER 4.86% and JER 25.48%.
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