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Abstract

This technical report describes ID R&D team submissions for
Track 1 (closed) and Track 2 (opened) for the VoxCeleb Speaker
Recognition Challenge 2022 (VoxSRC-22). This year VoxSRC
competition was focused on cross-age and same noise trials.
In our solutions we used a fusion of deep ResNets and self-
supervised learning (SSL) models trained on a mixture of pri-
vate large dataset and publicly available VoxCeleb2 for Track
2, and a fusion of the same architectures trained on VoxCeleb2
only for Track 1. The final submissions achieved the first places
on the VoxSRC-22 leaderboard for both Track 1 and Track 2
with a minDCF0.05 of 0.088 and 0.062 respectively.

Index Terms: Speaker recognition, Speaker verification

1. System Setup
In this chapter, we will describe the training setup of neural
networks that we used in the competition.

1.1. Architectures

As a main architecture we have chosen ResNet [1], that is
widely used in speaker recognition [2], [3] and ECAPA-TDNN
[4] trained on top of the features of self-supervised models, such
as WavLM [5] and HuBERT [6].

1.1.1. ResNet

We used a ResNet-34 [7] architecture as a baseline and applied
a couple of modifications to the original architecture that led to
ResNets with 100 and 202 hidden layers. As inputs for ResNets
we used Mel filter bank log-energies (MFB), with a 25 ms frame
length, 10 ms step and the FFT size of 512 over 20-7600 Hz
frequency limits. For all models in Track 1 we used 80 Mel
filter banks, while for the Track 2 models we used 96 Mel filter
banks for ResNet100 to increase the model’s capacity, and 64
Mel filter banks for the ResNet202 due to the computational
reasons. Finally, Frequency-wise Squeeze-Excitation (fwSE)
[8] blocks with bottleneck size 128 were added to the end of
each residual module. Details of the ResNet202 architecture
are shown in the table 1.

1.1.2. SSL + ECAPA-TDNN

For SSL models, we followed same approach as presented
in WavLM paper: stacked ECAPA-TDNN(C=1024) model
on top of wav2vec-like architecture weighted features (out-
puts from all transformer layers and conv-extractor mod-
ule). We used facebook/hubert-large-ll60k and
microsoft/wavlm-large pretrained models from Hug-
ginFace transformers framework [9].

1.2. Loss function

We used AM-Softmax loss with the margin value set to 0.3 and
a scale value set to 40 for all ResNet models in Track 2, while
for SSL models training the AAM-Softmax loss was used with
margin and scale parameters equal to 0.2 and 30 accordingly.
For the Track 1 models training we utilized the AM-Softmax
and reduced margin to 0.2 and scale to 35.

2. Self-VoxCeleb dataset
Inspired by the idea of the VoxCeleb2 dataset [10] collection,
we adopted and modified the collection method to obtain a sim-
ilar dataset of increased volume, to which we refer as a Self-
VoxCeleb. The dataset size overcomes VoxCeleb2 dataset size
by a multiple factor, and all the videos are licensed under the
CC BY 4.0. We did not use any face recognition model and
utilized a speech-based filtering only.

2.1. Collection scheme

In brief, the collection scheme was divided into 3 parts:

1. Channel meta filtering. Borrowing the main idea of
searching speakers on YouTube from [10], we came up
with a hypothesis, that there is a number of YouTube
channels, that have predominantly one person speak-
ing. For example, a person covering specific subjects
like: DIY, unpacking, teaching, and so on. Mostly, such
channels are easy to spot given only grid of video pre-
views. We aggregated metadata for approximately 1 mil-
lion channels, filtered it by minimal and maximal num-
ber of subscribers, channel topic (if presented) and some
other attributes presented in meta.

2. Channel videos selection. We passed filtered channels
to assessors, who’s task was to pick up to 25 videos from
each channel, that contain single speaking person based
on the video preview.

3. Audio segments filtering. On the final stage, we applied
a filtering of required speech segments. We extracted au-
dio track from each video, and applied an embeddings
extraction per 2 seconds segment without overlap us-
ing pre-trained SV model. We adopted an Hierarchi-
cal Agglomerative Clustering (HAC) over the extracted
embeddings and saved the biggest cluster segments as a
speaker representation. We also checked the similarities
of clusters from different videos in one channel in order
to maintain a good intra-speaker variability and to filter
out clusters with noisy speaker. We also dropped some
channels that had high cosine similarity score between
the median channel embedding (duplicate speakers). We
then sampled segments from the filtered clusters, and the
speaker label was generated based on the channel id.



Table 1: ResNet-202 architecture

Layer name Structure Output
(C × F × T)

Conv2D 3×3, 128, stride=1 128 × 64 × T

ResBlock-1

 3× 3, 128
3× 3, 128

fwSE, [128, 64]

× 6 128 × 64 × T

ResBlock-2

 3× 3, 128
3× 3, 128

fwSE, [128, 32]

× 16 128 × 32 × T/2

ResBlock-3

 3× 3, 256
3× 3, 256

fwSE, [128, 16]

× 75 256 × 16 × T/4

ResBlock-4

 3× 3, 256
3× 3, 256

fwSE, [128, 8]

× 3 256 × 8 × T/8

Flatten (C, F) — 2560 × T/8
StatsPooling — 5120

Dense — 256
AM-Softmax — Num. of speakers

3. Experiments
3.1. Dataset

We used VoxCeleb2-dev dataset [10] for training the mod-
els for Track 1. For open condition (Track 2) we used both:
Voxceleb2-dev (A) and Self-Voxceleb (B) datasets. For vali-
dation, VoxCeleb1-test [11] set and VoxSRC22 validation sets
were used.

3.2. Data augmentation

For data augmentaion during the training we used MUSAN [12]
and room impulse responses (RIR) [13] databases. For each
training utterance, one of six various augmentation strategies
was selected randomly:

• Music: A single music file is randomly selected from
MUSAN and added to the original signal (5-15dB SNR).
The duration of additive noise is matched to the duration
of the original signal.

• Noise: Randomly selected noise from MUSAN added to
the original recording (0-15dB SNR).

• Speech: Three to seven speakers are randomly picked,
summed together, then added to the original signal (13-
20dB SNR).

• Reverb: Artificially reverberate via convolution with
real RIRs [14].

• Speed: We applied a speed augmentation that increased
a number of speakers in training data by a factor of 3.
[15].

• SpecAugment: We masked from 0 to 5 frames in the
temporal axis and from 0 to 10 frames in the frequency
axis using the SpecAug [16].

3.3. Initial training stage

All models were trained using TensorFlow 2 framework [17] on
Google Cloud TPUs. For Track 1 we trained all models for 50

epoch, 5000 steps each. The batch size was set to 256, and 2-
seconds segments were randomly cropped for each utterance in
the batch. We have also scheduled values of learning rate and
margin of AM-Softmax loss function. The learning rate sched-
uler has three phases: warmup, plateau and decay. The learning
rate was increased linearly from 1e-5 to 0.1, while the margin
was equal to zero, for the first 3 epochs in warmup phase. Then,
the learning rate was fixed to 0.1 and the value of margin was
linearly increased from 0 to 0.2 for the next 10 epochs in the
plateau phase. After the margin achieved it’s maximum value,
the learning rate was decreased exponentially with a rate of 0.5
each 4 epochs in the decay phase. For the data augmentation we
used strategies described in section 3.2.

For the open Track 2 we used similar training strategy with
the following differences: the number of epochs was increased
to 200, the length of random crop in the batch was increased
to 4-second, the maximum value of margin was increased to
0.3. The scheduler of the learning rate was elongated: 8 epochs
for the warmup phase, 32 epochs for the plateau phase and the
period of decay phase was set to 15 epochs.

For the Track 1 we exploited only ResNet100 architecture,
while for the Track 2 we used both ResNet100 and ResNet202
architectures. For SSL based models, we used similar training
hyperparameters as for ResNets. We have trained multiple mod-
els with different hyper-parameters which are presented in the
table 2.

3.4. Fine-tuning stage

At the fine-tuning stage we removed SpecAugment and Speed
augmentations, and set L2-regularization to zero for all models.
The value of margin was set to 0.3, and the value of scale was
set to 30. The maximum value of learning rate was decreased to
1e-4 and the number of epochs was set to 20 and 50 for Tracks
1 and 2 accordingly. We also removed all remaining data aug-
mentations for the Track 2 models while fine-tuning. For SSL
based models we also unfreezed all the weights.

3.5. Pairwise scoring and AS-Norm

For inference, we sliced input samples (both enrollment and
verification) into 10× 4 seconds chunks resulting in 100 scores
as shown in eqs. (1) to (3), the same way as it was done in [10]
and [18].

N = 10 (1)

Nscores = N ·N = 10 · 10 = 100 (2)

score =

∑N
i=1

∑N
j=1 cosine(enrolli, verifyj)

Nscores
(3)

Verification score was further normalized by utilization of an
AS-Norm. The AS-Norm cohort included all VoxCeleb2-dev
speakers (mean embeddings) with a top N = 300 trials used to
estimate mean and std of scores distribution for normalization.

3.6. Quality Measurement Functions

It is well known that Quality Measuring Functions (QMFs) give
a huge performance boost, especially on VoxCeleb-based test-
ing datasets [19][3]. We can describe such signal parameters as
a quality of the signal, estimate the signal-to-noise ratio (SNR)
or the strength of the reverberation using the RT60 metric. Re-
cent speech quality researches [20][21] also attempted to predict
quality scores such as Mean Opinion Score as well as noisiness,



Table 2: Training hyper-parameters

RO - ResNet Opened track, RC - ResNet Closed track, SO - Self-supervised Opened track, FT - fine tuning stage.

Model
index Name Details Features Pooling Dataset Loss margin

and scale
Segment
len (sec) L2-reg Augs Batch

size

RC1 ResNet100 [6,16,24,3] MFB80 Stats A AM, 0.2, 35 2 1e−5 Y 256

RC1-FT AM, 0.3, 30 4 N Y 160

RC2 ResNet100 [6,16,24,3] MFB80 CAS A AM, 0.2, 35 2 1e−4 Y 256

RC2-FT AM, 0.3, 30 4 N Y 160

RC3 ResNet100 [6,16,24,3] MFB80 Stats A AM, 0.2, 35 2 1e−4 Y 256

RC3-FT AM, 0.3, 30 4 N Y 160

RO1∗
ResNet100 [6,16,24,3] MFB96 Stats A,B AM, 0.3, 40 4 1e−4 Y 256

RO1-FT AM, 0.3, 30 6 N N 160

RO2-FT1∗∗

ResNet100 [6,16,24,3] MFB96 Stats A,B AM, 0.3, 30
4 N N 256

RO2-FT2∗∗ 6 N N 160

RO2-FT3∗∗ 8 N N 128

RO3-FT∗
ResNet202 [6,16,75,3] MFB64 Stats A,B AM, 0.3, 30 6 N N 160

RO4-FT

SO1-FT WavLM
ECAPA

ECAPA
(C=1024) WavLM-large CAS A,B AAM, 0.2, 30 6 N N 128

SO2-FT HuBERT
ECAPA

ECAPA
(C=1024) HuBERT-large CAS A,B AAM, 0.2, 30 6 N N 128

∗ The Speed augmentation was not applied during initial training of this model.
∗∗ This model has higher proportion of Self-VoxCeleb in initial training stage compared to RO1 model.

coloration, discontinuity and loudness. Such models are trained
on datasets labeled with human opinions scores, so these met-
rics assumed to be representative from a human’s perception
point of view.

Based on the available labels and development and train
datasets we utilized the following QMF attributes for correction
of the verification scores.

Speech and total length based QMF values were extracted
with a help of a standard energy-based Voice Activity Detection
(VAD) [22] module. After applying the VAD, we summed all
the speech segments lengths into one value. List of generated
and used in out submissions QMFs:

• a) speech length of the enrollment model file,

• b) speech length of the trial file,

• c) logarithm of sum of enrollment and trial files speech
lengths,

• d) logarithm of sum of enrollment and trial files total
lengths.

Signal-to-Noise ratio based QMF values were obtained us-
ing the same VAD module. After classifying the voiced and
non-voiced segments of a signal, signal-to-noise ratio could be
calculated using the following equation 4:

SNRdB = 10 · log10
Pvoice

Pnon−voice
(4)

where Pvoice and Pnon−voice are powers of voiced and non-
voiced segments.

We used the following SNR values as QMF:

• e) SNR of enrollment model file,

• f) SNR of a trial file.

NISQA [21] Mean Opinion Score (MOS) was also used in
Track 2 as a QMF term. It is an open-source model for non-
intrusive speech quality estimation. NISQA predicts the human
perception of a speech signal quality on a scale from 1 to 5. We
utilized the NISQA output for the two following QMF values:

• g) NISQA MOS value of enrollment model file,

• h) NISQA MOS value of trial file.

We also tried to adopt the age detector based QMF scores,
however we did not observe a performance improvement using
that. Finally, all the QMF values were re-scaled to the range
[0, 1] using Min-Max normalization per attribute. For our final
Track 1 submission we used QMF values a) − f), and for the
Track 2 a)− d), g), h).

3.7. Evaluation protocol

System’s performance evaluation was conducted using two fol-
lowing metrics:

• The minimum detection cost function used by the NIST
SRE [23] with parameters PTarget = 0.05, CMiss = 1
and CFalseAlarm = 1.

• The Equal Error Rate (EER) which shows where False
Acceptance (FA) and False Rejection (FR) error rates are
equal.



Table 3: Results on the VoxCeleb1-test and VoxSRC22 dev sets

Model VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H VoxSRC22 Dev
EER[%] DCF0.01 EER[%] DCF0.01 EER[%] DCF0.01 EER[%] DCF0.05

RC1 0.47 0.036 0.63 0.067 1.17 0.114 1.57 0.100
RC2 0.45 0.039 0.65 0.069 1.19 0.116 1.62 0.099
RC3 0.45 0.038 0.59 0.062 1.12 0.111 1.56 0.090
RC1-FT 0.44 0.030 0.56 0.063 1.07 0.105 1.45 0.089
RC3-FT 0.43 0.032 0.53 0.058 1.04 0.105 1.47 0.083
RC2-FT 0.36 0.037 0.55 0.060 1.05 0.104 1.42 0.088

SO1-FT 0.56 0.089 0.60 0.066 1.36 0.139 1.89 0.121
SO2-FT 0.49 0.071 0.59 0.071 1.30 0.135 1.68 0.108
RO1 0.34 0.020 0.48 0.047 0.85 0.076 1.25 0.068
RO2-FT2 0.20 0.012 0.42 0.041 0.80 0.076 1.16 0.065
RO2-FT1 0.20 0.014 0.45 0.043 0.89 0.080 1.29 0.072
RO2-FT3 0.20 0.017 0.42 0.040 0.80 0.076 1.15 0.066
RO1-FT 0.29 0.024 0.45 0.045 0.84 0.076 1.24 0.068
RO3-FT 0.14 0.019 0.33 0.035 0.68 0.063 0.96 0.059
RO4-FT 0.13 0.011 0.36 0.035 0.68 0.061 0.97 0.060

Fusion Close 0.35 0.036 0.53 0.056 1.02 0.100 1.33 0.083
Fusion Open 0.14 0.012 0.36 0.035 0.66 0.060 0.94 0.056

4. Fusion scheme and results analysis

The output of our system is an implementation of a linear fusion
of cosine similarity scores for all the models and QMF values.
To find the weights of each model in a score-level fusion we
used the COBYLA optimizer on VoxSRC22-dev set. The trial
score was obtained according to eq. (5):

S′ =
[
w1 w2 ... wn

]
·


Sn

...
S2

S1

+
[
v1 v2 ... vk

]
·


Qk

...
Q2

Q1

 (5)

where w is a vector of models weights, S is a vector of single
models scores, v is a vector of QMF weights and Q is a vector
of QMF values.

Our fusion and single models metrics for all the protocols of
VoxCeleb1-test dataset and VoxSRC22 dev set are presented in
the table 3. This table results already include pairwise scoring,
AS-Norm and QMFs usage. From the results we can see, that
the addition of Self-VoxCeleb dataset in training improves the
metrics 20-50% relative, compared to the usage of VoxCeleb2-
dev training dataset only (see RC2 − FT and RO2 − FT3
submissions). Also, the optimal training hyperparameters for
ResNets are not optimal for SSL based models training, and as
a result we can not achieve the same quality. In our opinion, a
grid-search of optimal hyperparameters would solve this prob-
lem. And lastly, from all of our used QMFs we have found that
QMFs c) and d) had the highest weights in our fusion. We also
noticed that increase of QMFs weights produces better metrics
on VoxSRC-22 eval set. As a result, for our submissions af-
ter the optimal weights estimation on the VoxSRC-22 dev set,
we linearly scaled the QMFs weights (cumulative QMFs weight
increased from 10% to 30%).

5. Conclusions
In this report we presented our solutions for the Tracks 1 and
2 of the VoxSRC-22 challenge. We have found out a signif-
icant importance of usage of QMF values in fusion. We also
observed a positive trend in extending the amount of training
speech data for open Track 2, as our ResNet202 trained on a
mixture of VoxCeleb2-dev and Self-VoxCeleb achieves state-
of-the-art performance on the VoxCeleb1-test protocols. As a
future work we would like to reach the supervised models qual-
ity with our SSL based models. We would also like to pre-
train SSL models using a mixture of VoxCeleb2-dev and Self-
VoxCeleb datasets.
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