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Abstract
This technical report describes the submission of team pyannote
to the VoxSRC 2022 speaker diarization challenge. It relies on
3 stages: neural speaker segmentation on a 5s sliding window,
clustering of neural embedding of each speaker of each win-
dow, and final reconstruction. It reaches a diarization error rate
(with forgiveness collars) of DER=5.6% on VoxSRC 2022 test
set (DER=5.7% on VoxConverse 0.3 test set). In the spirit of
reproducible research, the pipeline is readily available in pyan-
note.audio open source library [1].
Index Terms: speaker diarization, reproducible research

1. Description
Figure 1 depicts the manual speaker diarization of a 30s con-
versation between two speakers that we will use for illustration
purposes.

Figure 1: Reference annotation of the excerpt used throughout
this technical report.

1.1. Neural speaker segmentation

The neural speaker segmentation model introduced in [2] is ap-
plied on a 5s sliding window using a 500ms step. Figure 2 il-
lustrates the output of this stage on the excerpt whose manual
annotation is depicted in Figure 1.

Figure 2: Output of neural speaker segmentation stage. For
each 5s window, the model outputs the probability of activity for
up to 3 speakers (blue, orange, and green) using a 16ms tempo-
ral resolution. Since the speaker segmentation model has been
trained in a permutation-invariant manner, the same speaker
might be assigned a different color in two different windows.
We use a step of 2s for readability but the actual practical step
is 500ms.

The output of the speaker segmentation model is further bi-
narized using a single threshold θsegmentation which is optimized
to minimize diarization error rate on VoxConverse 0.3 test set.
Figure 3 illustrates the output of this stage.

Figure 3: Binary speaker segmentation. For each 5s window,
only speakers whose probability goes above θsegmentation at least
once are kept.

Two versions of the model were compared: 2022.07 and
VoxSRC2022. The former has been trained on the union of
AMI (train) [3], AISHELL-4 (train) [4], DIHARD3 (develop-
ment) [5], REPERE (train) [6] and VoxConverse 0.3 (develop-
ment) [7]. The latter has been further finetuned using VoxCon-
verse 0.3 (development) only [7].

Table 1 reports the performance of the speaker diarization
pipeline, assuming perfect clustering. Based on these numbers,
we chose to use version VoxSRC2022 of the model in the rest
of the pipeline.

Segmentation DER% FA% MISS% CONF%
2022.07 8.5 3.4 3.9 1.2
VoxSRC2022 7.9 3.4 3.3 1.2

Table 1: Performance on VoxConverse 0.3 test set, assuming
perfect clustering. DER stands for diarization error rate (with-
out collar), FA for false alarm rate, MISS for missed detection
rate, and CONF for speaker confusion rate.

The binarization step depicted in Figure 3 also allows to
compute the instantaneous number of speakers, which will
prove very useful in the final reconstruction stage of the speaker
diarization pipeline (Section 1.3). For each 16ms frame (the
temporal resolution of the speaker segmentation model), this is
achieved by averaging the number of active speakers in each
overlapping windows: the result is illustrated in Figure 4.

Figure 4: Instantaneous speaker counting.

1.2. Clustering with neural speaker embedding

We extract a single neural speaker embedding for each active
speaker in each 5s window. For each speaker, we concatenate
audio samples during which (1.) they are active and (2.) no
other speaker is active ; and pass the resulting audio signal to

https://huggingface.co/pyannote/segmentation/tree/2022.07
https://huggingface.co/pyannote/segmentation/tree/VoxSRC2022


the neural network in charge of computing speaker embeddings.
This concatenation process is depicted in Figure 5.

Figure 5: Speaker embedding. Top row: 5s audio chunk. Middle
row: two speakers are active according to the neural speaker
segmentation model (the orange one and the blue one). Bottom
row: the speaker embedding of the blue speaker is computed
using only the blue audio signal, while the concatenation of or-
ange audio signals is used to compute the speaker embedding
of the orange speaker. No embedding is extracted for the green
speaker as its probability never goes above θsegmentation thresh-
old.

Once computed, speaker embeddings are clustered using
standard agglomerative hierarchical clustering using a single
distance threshold θembedding to decide when to stop merging
clusters, and optimized to minimize diarization error rate on
VoxConverse 0.3 test set.

A few publicly available speaker embedding models have
been compared, listed in Table 2, with the corresponding per-
formance of the resulting pipeline. Based on these numbers, we
chose to use speechbrain/spkrec-ecapa-voxceleb [8, 9] in the fi-
nal pipeline. After trying a bunch of agglomerative clustering
algorithms, we eventually

1. switched from average linkage to centroid linkage (be-
cause it performed slightly better empirically)

2. adding a post-processing step that re-assigns small clus-
ters (possible outliers) to the most similar large cluster.

Embedding DER% CONF%
pyannote [1] 14.9 8.1
TitaNet [10] 12.0 5.3
RawNet3 [11] 10.7 4.0
ECAPA-TDNN [8, 9] 10.6 3.9

Table 2: Performance on VoxConverse 0.3 test set, with ag-
glomerative hierarchical clustering and average linkage. DER
stands for diarization error rate (without collar) and CONF for
speaker confusion rate.

Once speaker embeddings are clustered, we simply assign
the original segmentation of each active speaker to the corre-
sponding cluster (Figure 6).

1.3. Final reconstruction

Depicted in Figure 7, the final step aims at combining the in-
stantaneous speaker counts from Section 1.1 and the clustering
from Section 1.2 into an actual speaker diarization hypothesis.
This pipeline reaches DER = 5.6% on VoxSRC 2022 test set

Figure 6: Clustered active speakers. The same speaker is as-
signed the same color over different windows.

and DER = 5.7% on VoxConverse 0.3 test set (both with 250ms
forgiveness collars).

Figure 7: Final reconstruction. Top row: for each (frame, clus-
ter) pair, we compute the sum of probability over all overlap-
ping 5s windows. Second row: instantaneous speaker counting
(same as Figure 4). Third row: for each frame, we select the
k clusters with highest sum of probability where k is given by
the second row. Fourth row: we fill within-speaker gaps shorter
than a few milliseconds.

2. Reproducible research
The speaker diarization pipeline described in this technical re-
port is readily available for the reader to try:

# install pyannote.audio
pip install https://github.com/pyannote/

pyannote-audio/archive/VoxSRC2022.tar.gz

# load pipeline
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained(

’pyannote/speaker-diarization@VoxSRC2022’)

# apply pipeline
diarization = pipeline(’audio.wav’)

Expected RTTM output on both VoxSRC 2022 test set and
VoxConverse 0.3 test set can be downloaded from this link. It
takes approximately 67 minutes to process the whole VoxSRC
2022 test set (45 hours), using one Nvidia Tesla V100 SXM2
GPU (for the neural inference part) and one Intel Cascade Lake
6248 CPU (for the clustering/reconstruction part). In other
words, processing is 40 times faster than real time.

3. About the VoxSRC 2022 challenge
3.1. Thank you!

I would like to thank the VoxSRC organizers for setting up such
a great challenge. Like many others, our (speaker diarization)

https://hf.co/speechbrain/spkrec-ecapa-voxceleb
https://hf.co/pyannote/embedding
https://hf.co/nvidia/speakerverification_en_titanet_large
https://hf.co/jungjee/RawNet3
https://hf.co/speechbrain/spkrec-ecapa-voxceleb
https://huggingface.co/pyannote/speaker-diarization/tree/VoxSRC2022/rttms


community struggles to come up with good and reliable ways to
measure progress 1 and shared tasks like VoxSRC are definitely
a step in this right direction. Thank you!

3.2. Share your RTTMs

Yet, reproducibility still seems out of reach, until we (the com-
munity) decide to share the full details of our systems (see Sec-
tion 2). Though I do understand that it is not always possible to
share the code or pretrained models, may I suggest that a con-
dition to participate to future editions of VoxSRC would be to
have all submitted RTTM files public right after the challenge
deadline? This will not solve the reproducibility problem com-
pletely but will be another step in that direction 2.

3.3. I don’t like collars!

Why, oh why, are we still using forgiveness collars to compare
systems? As speaker diarization systems are getting better and
better, it is getting more and more difficult to draw fair and reli-
able conclusions about which one is better than the other. Over-
lapping speech is probably one of the main sources of errors.
However, using forgiveness collars tend to remove a large por-
tion of overlapping speech from evaluation. I actually computed
the numbers myself: the proportion of evaluated overlapping
speech decreases from 2.96% (without collar) to 1.55% (with
a 250ms collar) on VoxConverse 0.3 development set. That’s
a 48% relative decrease (while only 10% of normal speech is
removed by those collars). Collars actually make the most dif-
ficult part of speaker diarization easier! May I suggest that we
do not use collars in future editions?

4. Acknowledgements
This work was granted access to the HPC resources of IDRIS
under the allocation AD011012177R1 made by GENCI.

5. References
[1] H. Bredin, R. Yin, J. M. Coria, G. Gelly, P. Korshunov,

M. Lavechin, D. Fustes, H. Titeux, W. Bouaziz, and M.-P. Gill,
“pyannote.audio: neural building blocks for speaker diarization,”
in ICASSP 2020, IEEE International Conference on Acoustics,
Speech, and Signal Processing, Barcelona, Spain, May 2020.

[2] H. Bredin and A. Laurent, “End-to-end speaker segmentation for
overlap-aware resegmentation,” in Proc. Interspeech 2021, Brno,
Czech Republic, August 2021.

[3] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot,
T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal et al.,
“The ami meetings corpus,” in Proceedings of the Measuring Be-
havior 2005 symposium on” Annotating and measuring Meeting
Behavior, 2005.

[4] Y. Fu, L. Cheng, S. Lv, Y. Jv, Y. Kong, Z. Chen, Y. Hu, L. Xie,
J. Wu, H. Bu, X. Xu, J. Du, and J. Chen, “AISHELL-4: An Open
Source Dataset for Speech Enhancement, Separation, Recognition
and Speaker Diarization in Conference Scenario,” in Proc. Inter-
speech 2021, 2021, pp. 3665–3669.

[5] N. Ryant, P. Singh, V. Krishnamohan, R. Varma, K. Church,
C. Cieri, J. Du, S. Ganapathy, and M. Liberman, “The Third DI-
HARD Diarization Challenge,” arXiv preprint arXiv:2012.01477,
2020.

1https://github.com/BUTSpeechFIT/CALLHOME_
sublists/issues/1

2http://blog.benjaminmarie.com/2/
comparing-uncomparable.html

[6] J. Kahn, O. Galibert, L. Quintard, M. Carré, A. Giraudel, and
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