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Abstract
This report describes HYU submission to track 3 and 4 of
the Voxceleb Speaker Recognition Challenge 2022 (VoxSRC-
22). Track 3 focuses on semi-supervised domain adaptation
for speaker verification. We fine-tune the pre-trained models
that fit with English with Chines labeled data and generate the
pseudo labels of Chines unlabeled data with iterative cluster-
ing. We fine-tune the pre-trained models again for domain
adaptation by using the real and pseudo labels. In track 4, a
speaker diarization task, we apply energy-based voice activ-
ity detection to overlapped speech and extract speaker embed-
dings by sliding the time frames using the pre-trained model
of speaker embedding extractor. We employ spectral clustering
with an attention-based embedding aggregation method to log
the speech timestamps and tagging with speaker-specific labels.
Our best-submitted score to the challenge achieved 11.23% and
9.44% in equal error rate and diarization error rate, respectively,
on the VoxSRC-22 track 3 and 4 test set.
Index Terms: VoxSRC, speaker verification, semi-supervised
learning, speaker diarization

1. Introduction
The VoxCeleb Speaker Recognition Challenge 2022 (VoxSRC-
22) has been held with various speaker verification tasks, in-
cluding a speaker diarization task [1, 2, 3]. It contributes to the
development of advanced technology that highly represents the
characteristics of each speaker in a segment and frame level of
speech. This year four tracks are opened, track 1 and track 2 are
fully supervised speaker verification tasks, and the tracks are
split into whether there are restrictions on training data. Track
3 is a semi-supervised speaker verification task using the Chi-
nese dataset, and domain adaptation from English to Chinese is
designated a sub-goal. Track 4 order to determine ”who talked
when,” speaker diarization divides multi-speaker audio into ho-
mogeneous segments representing a single speaker. Track 4 is
an open track that allows all data for training, and the difference
from last year is that some errors in the valid set are corrected.

This report summarizes the Hanyang University solution
for the VoxSRC-22 tracks 3 and 4. Our training strategies for
track 3 is divided into three steps. 1) prepare the pre-trained
model using source domain data and adapting it with small
source domain data that are labeled. 2) generate a pseudo-label
to utilize unlabeled and large source domain dataset. 3) fine-
tune the various pre-trained models with real and pseudo la-
bels for all source domain data as targets, then perform score
fusion. Moreover, in track 4, we develop our diarization sys-
tem with four steps. 1) prepossess the audio mixture using the
energy-based voice activity detection (VAD) module. 2) extract
the speaker embedding from the pre-trained speaker embedding
extractor. 3) cluster the speaker embeddings based on spectral
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clustering with applying attention-based embedding aggrega-
tion (AA) method [4] and scaling the affinity matrix. 4) estimate
the final cluster labels and perform the scoring with dscore tool
[5]. The following sections will describe our works in detail.

2. Track 3 : Semi-supervised domain
adaptation

2.1. Speaker embedding extractor

This work considers ECAPA-TDNN-L for all training steps
and three different speaker embedding extractor architectures
for the final training step. The ECAPA-TDNN-L was sug-
gested in [6], which is constructed with TDNN architectures
and emphasizes channel attention, propagation and aggrega-
tion. It also incorporated the squeeze-excitation blocks, multi-
scale Res2Net features, and a different multi-stage aggregation
method with channel-dependent attentive statistics pooling. We
download the pre-trained model, which used 80-dimensional
(80D) mel-filterbank energies (MFBEs), and the base chan-
nel and embedding size are set to 1,024 and 192, respectively,
[7]. Extra speaker embeddings are ResNet-34 [8], Res2Net-
34 [9], and BC-CMT-Base [10]. The ResNet-34 was widely
used in image and sound classification and adopted good per-
formance in the speaker verification field [11]. We download
the pre-trained model from the [12], which is trained using
64D MFBEs. It has 512D speaker embedding and incorpo-
rates the squeeze-excitation blocks and original ResNet blocks.
The Res2Net model advanced residual learning by dividing the
channel dimension of ResNet into multiple scales. The model
used in this work used hyperparameters to have four scales and
widths of 16. This Res2Net-34 is identical to that described
in [13]. we consider the BC-CMT as the last model which is
a CNN-Transformer hybrid algorithm that is Incorporated with
broadcasted residual learning [14] and computer-meets-vision-
Transformer [15]. BC-CMT also proposed frequency-statistics-
dependent attentive statistics pooling to effectively capture the
speaker information in the frequency dimension. We use the
BC-CMT-Base. Further details can be found in [10]. Both
Res2Net-34 and BC-CMT-Base require 80D MFBEs and 256D
speaker embeddings that are extracted from the penultimate
layer with batch normalization. Note that VAD is not applied
when extracting the MFBEs that are used in all models.

2.2. Dataset

VoxSRC-22 track 3 allows using the source and target domain
datasets. The source domain dataset was the VoxCeleb2, which
mainly comprises English. VoxCeleb2 [16] dev set has 5,994
speakers and 1,092,009 utterances that were allowed to use
for training speaker embedding extractor. The target domain
dataset is a portions of CN-Celeb2 [17] that are divided into an
unlabeled and labeled data according to the challenge protocol.
The unlabeled dataset contains over 450,000 utterances, and the



Table 1: Results on HYU submission on VoxSRC-22 track 3 valid and test set

Speaker Model Training VoxSRC-22 track 3 valid set VoxSRC-22 track 3 test set
embedding size Step CSS PLDA CSS PLDA
extractor 1 2 3 EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

ECAPA-TDNN-L 15.7 M

✓ - - 13.11 0.503 - - 12.98 0.619 - -
- 1 - 12.98 0.511 - - - - - -
- 2 - 12.78 0.510 - - - - - -
- 3 - 12.64 0.520 - - - - - -
- 4 - 12.34 0.524 - - 13.21 0.650 - -
- - ✓ 11.62 0.534 11.06 0.540 - - - -

ResNet-34 8.0 M - - ✓ 12.74 0.565 12.22 0.552 - - - -
Res2Net-34 12.2 M - - ✓ 12.22 0.485 10.24 0.469 - - - -

BC-CMT-Base 6.3 M - - ✓ 12.67 0.545 11.56 0.545 - - - -
Fusion - - - - 11.36 0.500 9.68 0.475 13.48 0.647 11.23 0.578

labeled dataset contains 1,000 utterances of 50 speakers. Note
that we does not consider the short utterances of less than 1
second in training. The number of utterances of the valid and
test set provided by the organizer is 2,500 and 18,000, respec-
tively, and the number of trials is 40,000 and 30,000, respec-
tively. Data augmentation was performed by using MUSAN
noise [18], babble, and music samples and simulation room im-
pulse responses [19] in an on-the-fly manner.

2.3. Training strategies

2.3.1. Step1

VoxCeleb2 conducts mainly in English interview; thus, we
adopted the ECAPA-TDNN-L to Chinese dataset with multi-
ple genre to achieve the goal. We fine-tuned the model using
labeled dataset of CN-Celeb2 to adjust with Chinese domain.
We removed the last linear layer that had a size of number of
Voxceleb2 speakers and connected a randomly initialized 50D
linear layer. First, we freezed the rest of the ECAPA-TDNN-L,
and then fine-tuned the last layer. This training schemes similar
to those described in [20, 21]. For the fine-tuning, angular addi-
tive margin softmax (AAMsoftmax) loss function with scale of
30 was used for objective function. After last layer training 50
epochs with zero margin, we unfreezed the entire network and
further proceeded the fine-tuning with the margin of 0.2. The
total 120 epochs were set for fine-tuning with warm-up cosine
scheduling, the learning rate linearly increased from 0 to 0.0001
in the first ten epochs and decreased to 0.

2.3.2. Step2

Although there were many studies on effectively using a large
unlabeled dataset, there was a limit to improving performance
without speaker information. To overcome this problem, we
used the iterative clustering method that generates pseudo
speaker labels, sets them as targets, performs training similar to
supervised learning, and repeats the generation/learning process
several times until valid performance converges. We used the
ECAPA-TDNN-L trained in Stage 1 to extract the speaker em-
beddings for each utterance of the labeled and unlabeled dataset
of CN-Celeb2. One embedding representing each speaker is
obtained by averaging from labeled data, and the k-means clus-
tering [22] is performed with embeddings of each utterance ex-
tracted from unlabeled data to get a pseudo label. We set the
trained model as an initial model. The pseudo and real labels

that form the unlabeled and labeled datasets were given as tar-
gets. Identically equal to step 1, we replaced the last layer with
a linear layer of 2000 size in which the cluster number was set
to 2000. Subsequently, all layers except for the last layer were
frozen until the 50 epochs; after that, 70 epochs were learned
by unfreezing all layers. The margin of AAMsoftmax was in-
creased from zero to 0.2 at unfreeze for training when the layer
was unfreezing. Learning rate warm-up was applied for the ten
epochs, then decreased to zero with cosine annealing. We cre-
ated a label and repeat the same process of learning using the
label four times. After the last learning, we determined the final
label for all the unlabeled dataset.

2.3.3. Step3

Returning to step 1, domain adaptation for CN-Celeb2 was per-
formed for several speaker recognition models. The difference
was that the training data size was very large compared to step1
because the final label was generated in step2. We used the
ECAPA-TDNN-L, ResNet-34, Res2Net-16s4w, BC-CMT-Base
for the speaker extractor model. The training strategy was iden-
tically same as in step 1, just like step 2.

2.4. Results

We extracted the speaker embeddings to test set and all training
set that used in step 3. The speaker embeddings were divided by
the overall average, then length normalization was applied. We
evaluated the valid and test trials with cosine similarity (CSS),
and probabilistic linear discriminant analysis (PLDA)[23, 24]
for scoring methods. The PLDA was trained with the limita-
tion that the within-speaker covariance was set to be a diagonal
matrix in each iteration of the expectation-maximization step,
as suggested in [25]. The results were evaluated in terms of
the equal error rate (EER) and minimum of the detection cost
function (minDCF) with target probabilities of 0.05. The ex-
perimental results were shown in Table 1. Comparing the ex-
periment results with training step 3, ECAPA-TDNN-L was the
best in the valid set, followed by Res2Net-34, BC-CMT-Base,
and ResNet-34. In the test set, Res2Net-34 significantly outper-
formed the others, and ECAPA-TDNN-L, BC-CMT-Base, and
ResNet-34 followed the Res2Net-34. We calculated the fusion
score by adding the scores of all models to one, and the PLDA
of the fusion model achieved the best performance by achieving
11.23% in EER.



Table 2: Results on HYU submission on VoxSRC-22 track 4 valid set

Case Range 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 DER(%) JER(%)
1

scaling
value

- - - - +0.4 +0.3 - - 13.08 34.79
2 - - - - +0.4 +0.3 +0.2 - 12.25 34.63
3 - - - - +0.4 +0.3 +0.2 +0.1 12.19 34.12
4 - - - +0.5 +0.4 +0.3 +0.2 +0.1 12.52 34.27
5 -0.1 - - - +0.4 +0.3 +0.2 +0.1 12.19 34.54
6 -0.1 -0.2 - - +0.4 +0.3 +0.2 +0.1 12.18 33.59
7 -0.1 -0.2 -0.3 - +0.4 +0.3 +0.2 +0.1 12.71 34.40
8 -0.1 -0.2 -0.3 -0.4 +0.4 +0.3 +0.2 +0.1 12.63 34.65

3. Track 4 : Speaker diarization
3.1. Speaker diarization based on spectral clustering

For clustering-based speaker diarization, our proposed model is
composed of VAD, speaker embedding extractor, and cluster-
ing modules. Before extracting the speaker embeddings, the in-
put audio frames are pre-processed using the energy-based VAD
module. After then, we used ResNet-34 for the speaker embed-
ding extractor proposed in [26]. This model uses 64D MFBEs
as input and applies channel-dependent attentive statistics pool-
ing to the multiple hierarchies of feature maps for extracting
speaker embeddings. We extracted them from the penultimate
layer after the pooling of this model.

Finally, we applied the clustering technique called spectral
clustering (SPC) [27]. SPC is the algorithm for grouping the
features using the manifold of embedding spaces. This algo-
rithm calculates the affinity matrix with cosine similarity be-
tween two inputs. Then, eigen-decomposition to affinity matrix
is carried out. Finally, k-means clustering is performed on the
spectral embeddings to estimate the final cluster labels.

3.2. Technique for affinity matrix : AA and scaling

The SPC algorithms for diarization have limitations depend-
ing on the input features. For example, the SPC is sensitive
to noises in the affinity matrix. Therefore we referred to [4],
and applied the attention-based embedding aggregation (AA)
to remove noises and outliers. To use this technique, We calcu-
late the affinity matrix with cosine similarity for each embed-
ding using the softmax function with temperature τ . Then, the
embeddings are aggregated based on this affinity matrix. We
expect this technology to be able to form appropriate clusters.

Furthermore, we added a process of scaling the affinity ma-
trix, which completed the AA process to help it be divided more
efficiently in the clustering process. The values of each element
constituting the affinity matrix were scaled using a method of
adding or subtracting a specific value from the value of a cer-
tain interval. Through this, the ambiguous values changed to
clearly distinguished ones, and the embedding existence inter-
val vaguely clustered in the clustering process was reduced.

3.3. Dataset

The speaker embedding extractor were trained using the dev
partition of VoxCeleb2 dataset with data augmentation as men-
tioned in chapter 2.

We used dev set of VoxConverse [28] for valid set which
provided from challenge which consists of 216 recordings and
20.3 hours in total. The number of speakers in one recording
varies from 1 to 20. Based on the score result from the dev set,

the result was evaluated with a test set and submitted it.

3.4. Experiments

The training epoch of the speaker embedding extractor was de-
fined as the iterations over 30,000 mini-batches. The model
weights were subject to ℓ2-regularization with a scale of 0.01.
This model was trained using the stochastic gradient descent
optimizer with a learning rate of 0.01.

Based on various experiments, the hyperparameters for the
AA technique and the range and degree of scaling were deter-
mined. as the iterations over 30,000 mini-batches. We used
temperature τ as 20 to calculate the softmax function of the
AA technique. Furthermore, unlike the paper [4] proposed by
AA, we applied this process only once without iteration to pre-
vent the affinity matrix from being severely deformed. Then
we added and subtracted the value of the affinity matrix, which
processed this AA technique. As shown in Table 2, the range
of elements constituting the matrix was divided into 0.1 units,
and scaled so that ambiguous values were converted into defi-
nite values. Through this scaling process, we tried to help the
affinity matrix cluster the embedding of each speaker.

3.5. Results

We introduced a diarization system combining each module to
produce a suitable result for this task. Diarization Error Rate
(DER) which consists of miss speech, false alarm, and speaker
confusion error and Jaccard error rate (JER) which is introduced
for DIHARD II [29] that is based on the Jaccard index used as
the evaluation measure. The dscore tool provided by the chal-
lenge was used to evaluate and score the model with DER and
JER. We selected a system that achieved a DER of 12.18%
based on its performance on the development set of VoxCon-
verse used for verification. Finally, our system has achieved
DER of 9.44% and JER of 42.23% on the test set, which shows
a performance improvement of about 52% over baseline from
the DER perspective.

4. Discussion and conclusions
Our work achieved EER and DER of 11.23%, and 9.44%, re-
spectively, in tracks 3 and 4, which were the evaluation met-
rics of the challenge. We analyzed the experimental results and
looked for points for improvement. As for ECAPA-TDNN-
L results in Track 3, the test EER of step 1 was superior to
step 2, and the valid EER of step 2 was better than that of
step 3. We considered that selection of the pseudo label was
not accurate. In step 3, when selecting a model, Res2Net was
better than ECAPA-TDNN-L. In the recently conducted first-



place presentation of the CN-SRC speaker verification track,
ECAPA-TDNN-L showed lower performance in CN-Celeb than
the ResNet. We believe that experimenting with Res2Net will
show better performance than ECAPA-TDNN-L. In track 4, the
role of the affinity matrix is important in performing spectral
clustering for diarization. Therefore, we made sure that the
affinity matrix had clearer values by applying AA and scal-
ing so that clustering was well performed for speaker embed-
dings located in ambiguous boundaries. Through these tech-
niques, our proposed diarization system showed improved per-
formance, showing that the affinity matrix with definite values
is more helpful for the subsequent clustering process.
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