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Abstract

This paper discribes the DKU-SMIIP submission to the 4th
track of the VoxCeleb Speaker Recognition Challenge 2022
(VoxSRC-22). Our system contains a fused voice activity detec-
tion model, a clustering-based diarization model, and a target-
speaker voice activity detection-based overlap detection model.
Overall, the submitted system is similar to our previous year’s
system in VoxSRC-21. The difference is that we use a much
better speaker embedding and a fused voice activity detection,
which significantly improves the performance. Finally, we fuse
4 different systems using DOVER-lap and achieve 4.75% of the
diarization error rate, which ranks the 1st place in track 4.
Index Terms: Speaker Diarization, Target-Speaker Voice Ac-
tivity Detection, VoxSRC 2022

1. Introduction
Speaker diarization is the task that breaks up multi-speaker
audio into homogeneous single speaker segments, effectively
solving “who spoke when”, which is also the task in track 4 of
the VoxCeleb Speaker Recognition Challenge 2022 (VoxSRC-
22). In this paper, we focus on the speaker diarization tasks and
present the details of our submitted system.

Compare with our system in last year’s VoxSRC (VoxSRC-
21) [1, 2], we focus more on the voice activity detection (VAD)
model this year. We tried several different VAD models. Al-
though each of the single VAD model only shows similar per-
formance compared with our previous year’s submission, but
the fusion brings a satisfying reduction on diarization error rate
(DER). In addtion, for overlap detection, the target-speaker
voice activity detection (TS-VAD) shows better performance
than just only predicting the overlap regions. Last but not least,
we employ a more powerful speaker embedding model [3] in
the agglomerative hierarchical clustering-based (AHC) diariza-
tion model. This AHC model with TS-VAD can achieve 4.85%
of the DER, which still ranks 1st on the leaderboard. Finally,
fusing of 4 different systems with DOVER-lap further reduces
the DER to 4.74%.

2. Dataset Description
As this task can use any dataset for training, the detailed dataset
used in this challenge for each model include:

• Voice activity detection (VAD): Voxconverse dev set for
training and Voxconverse test set for validation.

• Speaker embedding: Voxceleb 1 & 2 [4] for training.

• AHC-based diarization system: Only Voxconverse test
set for hyper-parameter tuning.

• Spectral clustering-based diarization system: Voxcon-
verse dev set for training and Voxconverse test set for
validation.

• Overlap detection: Voxconverse dev set for training and
Voxconverse test set for validation.

• TS-VAD: This model is first trained on the data simu-
lated by Librispeech [5]. Then it is finetuned on Voxcon-
verse dev set and validated on Voxconverse test set.

• Data augmentation: MUSAN [6] and RIRs [7] corpus.

3. Detailed Model Configuration
This section describes the model of our submission. If not
specified, the input acoustic features of all model are 80-dim
log Mel-filterbank energies with a frame length of 25ms and a
frameshift of 10ms.

3.1. VAD

We focus more on the VAD in this year’s challenge, and we
employ 4 different models for VAD.

3.1.1. ResNet34-based VAD (model #1)

We use a ResNet34 as the front-end model to extract the frame-
level feature map. Next, a statistical pooling layer is employed
on the feature map every one frames. Finally, a 4-head 2-layer
transformer encoder and a fully-connected layers with a sig-
moid function produce the posterior probability of speech.

3.1.2. Conformer-based VAD (model #2)

We adopt a ResNet50 as the front-end model to extract multi-
scale feature maps as same as the configuration in [8]. Then, the
convolution subsampling layers transfer each feature map to a
sequence of embeddings. Next, a Conformer encoder [9] aggre-
gates the flattened feature sequence and the vanilla Transformer
decoder [10] can predict the final VAD results. The encoder and
decoder are set to have 6 layers with 256-dim 4-head attention
modules and sinusoidal positional encodings.

3.1.3. VAD from pyannote.audio 2.0 (model #3)

We use pyannote.audio 2.01 for computing the VAD results. We
use the same model and hyper-parameters hosted in hugging-
face2.

1https://github.com/pyannote/pyannote-audio/tree/develop
2https://huggingface.co/pyannote/segmentation



3.1.4. ASR-based VAD (model #4)

We make use of the word-level timestamps derived from the
Kaldi ASR system. Intuitively, all the time segments labeled
with eps symbols are regarded as non-speech segments. In this
challenge, we follow the same recipe provided in Kaldi Lib-
rispeech recipe3 [11], except that we change the window shift
to 12.5 milliseconds when computing the MFCCs.

Table 1: False alarm (FA), miss detection (MISS) and accuracy
of the VAD model on Voxconverse test set

#Model FA [%] MISS [%] Error [%]

1 2.94 1.33 4.27
2 2.70 1.77 4.47
3 2.25 2.10 4.35
4 0.81 11.87 12.68

Fusion 2.60 1.37 3.97

As shown in Table 1, model 1, 2 and 3 have similar per-
formance. The performance of model 4 is worse than others
as it is a pretrained ASR system and we cannot tune it on the
voxconverse dataset without text labels. After we perform fu-
sion with majority vote, both false alarm and miss are reduced,
which brings about 0.3% reduction on DER.

3.2. Speaker Embedding

The SimAM-ResNet34 structure is employed as the front-end
pattern extractor, which learns a frame-level representation
from the input acoustic feature. An attentive statistic pooling
(ASP) [12] layer projects the variable length input to the fixed-
length vector. Next, a 256-dim fully connected layer is adopted
as the speaker embedding layer. The ArcFace (s=32,m=0.2)
[13] is used as a classifier. The detailed configuration of the
neural network is the same as [3]. The acoustic feature is 80-
dim log Mel-filterbank energies with a frame length of 25ms
and a frameshift of 10ms.

We adopt the two-stage training method. The speaker em-
bedding model in the pre-trained stage is trained by VoxCeleb2
dev set. To verify the performance of the speaker verification
system in the VoxSRC22 task4, we create the trial file using rel-
ative speaker labels in segments (since there are no ground truth
speaker labels in the VoxConverse set). Table. 2 reports the
system performance. The results indicate a large domain gap
between the VoxCeleb and VoxConverse sets. Therefore, to re-
duce the domain mismatch, the embedding of VoxConverse dev
set is extracted and clustered with a fixed threshold to determine
the speaker class. After pseudo-labeling for the VoxConverse
dev set, the Vox2dev set together with the VoxConverse dev set
are fed into the pre-trained speaker model to fine-tune.

However, although finetuned embedding shows better per-
formance on voxconverse test set, but it is worse on the chal-
lenge test set. Therefore, we only present the results that use
the embedding trained by VoxCeleb2.

3.3. Clustering-based Diarization

For clustering-based diarization, we use two different model.
One is based on AHC and another is based on spectral cluster-
ing. In our experiments, AHC can achieve a lower DER and
spectral clustering can estimated the number of speaker more
accurately.

3https://kaldi-asr.org/models/m13

Table 2: The performance of speaker embedding system.

Model Vox-O VoxSRC22 task4val

EER[%] mDCF EER[%] mDCF

SimAM-ResNet 0.726 0.036 5.84 0.220
+ fine-tune - - 5.08 0.335

3.3.1. AHC

The AHC-based diarization model is exactly the same as we
used in previous years, which is also similar to the Microsoft
system in VoxSRC-20 without speech separation [14]. First,
speaker embeddings are extracted from the uniformly seg-
mented speech with a length of 1.28s and shift of 0.32s, and
two consecutive segments are merged into a longer segment if
the distance is greater than a segment threshold, which is the
AHC-based segmentation. The pairwise similarity is measured
by cosine distance. Next, we perform a plain AHC on the sim-
ilarity matrix with a relatively high stop threshold to obtain the
clusters with high confidence. These clusters are split into “long
clusters” and “short clusters” by the total duration in each clus-
ter, and the central embedding of each cluster is the mean of
all speaker embeddings in the cluster. Later, each short clus-
ter is assigned to the closest long cluster by the cosine distance
of central embedding. Finally, if a short cluster is too different
from all long clusters, which means that the distance between
them is lower than a speaker threshold, we treat it as a new
speaker.

All of these parameters are directly tuned on the voxcon-
verse test set by grid search. In our experiments, the segment
threshold is 0.54, the stop threshold is 0.6, the duration for clas-
sifying long and short clusters is 6s, and the speaker threshold
is 0.2.

3.3.2. Spectral Clustering

We use an LSTM model to predict the affinity matrix [15]. The
model consists of two BiLSTM and two fully connected lay-
ers with a sigmoid function. Speaker embeddings are also ex-
tracted from the uniformly segmented speech with a length of
1.28s and shift of 0.64s. Next, the speaker embedding sequence
[x1,x2, ...,xn] is concatenated with repeated xi as the input
and produce the i-th row of the affinity matrix S:

Si = [Si,1,Si,2, ...,Si,n] = f(

[
xi

x1

]
,

[
xi

x2

]
, ...,

[
xi

xn

]
), (1)

where f is the LSTM-based neural network, n is set to 64 in our
experiments. More details can be found in [16] and [17].

The model is trained on the voxconverse dev set for 200
epochs. The model is optimized with BCE loss and Adam opti-
mizer with a learning rate of 0.001. After obtaining the affinity
matrix S, we employ spectral clustering (SC) to get the final
diarization results.

3.4. Overlap Detection

The overlap detection model is the same as that of the VAD
model #1. The label is 1 for overlapped speech and 0 otherwise.
After an overlapped region is detected, we replace the label with
two closest speakers near this region. The threshold for overlap
decision is set to 0.85. The input is 16s chunked wav.



Table 3: The performance of different speaker diarization systems in terms of DER (%) and JER (%).

Model Test (Oracle VAD) Test (System VAD) VoxSRC-22 Test

DER[%] JER[%] DER[%] JER[%] DER[%] JER[%]

Baseline - - - - 19.60 41.43

AHC 3.36 21.67 5.35 27.99 - -
+ OD 3.03 21.43 5.02 27.72 - -
+ TS-VAD (fully assigned) 3.60 22.21 5.61 28.08 - -
+ TS-VAD (partially assigned) 2.96 21.77 4.86 27.69 4.85 28.05

LSTM-SC 4.91 32.74 6.36 34.82 - -
+ OD 4.39 32.02 6.04 34.53 - -
+ TS-VAD (fully assigned) 4.12 31.70 5.68 33.92 - -
+ TS-VAD (partially assigned) 4.31 32.14 5.85 34.30 - -

Fusion 3.09 23.14 4.94 28.79 4.74 27.84

3.5. TS-VAD

3.5.1. Data Simulation

we create a simulated dataset from the Librispeech dataset, and
the simulation process is as follows:

1. We select all non-overlapped speech for each speaker
from the Librispeech dataset for simulation.

2. Extract the labels from the transcript of the voxconverse
dev set and remove all silence regions.

3. During the training stage, the simulated data is gener-
ated in an online manner, where we randomly choose a
segment of the label and fill the active region with the
continuous non-overlapped speech segments.

The more detailed simulation process can be found in [1]. Fi-
nally, the voxconverse test set is adopted as the validation and
evaluation set.

3.5.2. Training details

TS-VAD has achieved an excellent performance on
CHIME6 [18] and DIHARD III [19] challenge. Unlike
the previous method using i-vector, we employ ResNet-based
x-vector as the target-speaker embedding.

The TS-VAD model is also similar to the VAD model ex-
cept that the feature maps produced by ResNet need to be con-
catenated with a target speaker embedding. The concatenated
features are then fed to the BiLSTM layers and fully connected
layers. The number of target speakers embedding N is set to 8.
The parameters of front ResNet34 are initialized from another
ResNet34-based speaker embedding model.

The model is first trained on the simulated LibriSpeech for
10 epochs with front ResNet34 frozen, and then it is trained for
another 10 epochs with all parameters. Finally, we fine-tune the
model on voxconverse dev set for 50 epochs and validate on
voxconverse test set. The learning rate is 0.0001 when training
on simulated data and 0.00001 during the fine-tuning stage. The
model is optimized by BCE loss and Adam optimizer. The input
is 16s chunked wav.

3.5.3. Inference

For inference, the non-speech regions are first removed by
VAD, and the wavs are split into 16s chunks. Next, speaker em-
beddings are extracted given the results from a clustering-based
method. We only consider those speaker embeddings with 16s

or longer speech. For those speakers whose speech is shorter
than 16s, we directly keep their clustering-based results. If the
number of speakers is less than 8, we use zero-vectors as the
fake embeddings. If it is greater than 8, we discard the speaker
embeddings with shorter speech, but their labels are kept in the
final results. The threshold for speaker decision is set to 0.5.

However, if we fully assign the TS-VAD results for each
speaker, the performance is worse compared with the AHC-
based results as the retrieved overlap regions cannot compensate
the error on speaker confusion. To solve this, we only partially
assign the overlap region to the AHC-based results, which sig-
nificantly reduces the DER.

3.6. Data Augmentation

We perform online data augmentation [20] with MUSAN and
RIRs corpus. For background additive noise, we use ambient
noise, music, television, and babble noise. For reverberation,
we perform convolution with 40,000 simulated room impulse
responses from small and medium rooms. The data augmenta-
tion is employed for all models which take acoustic features as
input.

3.7. System Fusion

To further improve the performance and robustness, we fuse our
systems by DOVER-Lap [21].

4. Experimental Results
Table 3 shows the results on voxconverse test set and the chal-
lenge test set. For the clustering-based system, the AHC method
achieves 5.35% of DER on Voxconverse test set with system
VAD. Next, we use TS-VAD to detection the overlap regions
and achieves 4.85% of DER on both Voxconverse test set and
challenge test set.

Although AHC-based diarization system can achieve the
lowest DER, but it always overestimates the number of speaker,
e.g., predicting 30+ speakers even it only contains 10 speak-
ers. To solve this, we employ SC-based diarization system. Al-
though it shows worse performance compared with the AHC-
based system, it can always estimates the number of speaker
more accurately than AHC-based system. We didn’t submit this
SC-based system independently, but we fuse it with other sys-
tems to improve the system diversity and achieve a lower DER.

Finally, our best system contains 4 systems fused by



DOVER-Lap: AHC+OD, AHC+TS-VAD (partially assigned),
AHC+TS-VAD (fully assigned) and LSTM-SC+TS-VAD (par-
tially assigned), which achieves 4.75% of the DER, which ranks
1st place in this challenge.

5. Conclusions
In this paper, we describe our system for the VoxSRC 2022. To
achieve better performance, we mainly focus on the voice ac-
tivity detection and overlapped speech detection. We employ
overlap detection and TS-VAD to reduce the missed speaker er-
ror. Our fused VAD reduces the DER by 0.3% compared with
the VAD from single model, and the TS-VAD-based overlap de-
tection further reduces DER by about 0.6%, which significantly
improves the performance.
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